首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
F1 complementation results indicate that a new gene, putatively controlling a minor histocompatibility antigen, is closely linked to the minor histocompatibility gene,H-3, in the fifth linkage group of chromosome 2 of the mouse. This gene controls a product that was capable of inducing as well as acting as a target for cytotoxic lymphocytes (CTL). The lytic activity of CTL developed in B10.LP-H-3b mice specific for the product of the new gene of B10 was restricted to target cells possessing H-2Db antigens. This contrasts to the H-2Kb-restricted activity of H-3.1 specific CTL.  相似文献   

2.
A panel of cytotoxic T lymphocyte clones that recognize H-2b target cells has been established. Six different clones were distinguished according to the following criteria. First, the fine specificity of the clones was determined by testing proliferation and cytotoxicity on target cells of recombinant mice. Clone 221 recognized H-2Kb, and five other clones recognized H-2Db. Clone 433 distinguished itself from the other five Db-specific clones by cross-reacting with an antigen on H-2k cells. Second, the presence of an idiotypic determinant as defined by the 3179 clone-specific monoclonal antibodies was investigated in cytotoxicity inhibition experiments. One of the Db-specific clones, 653, was inhibited by these antibodies and was therefore clearly different from the other Db-specific clones. The third criterion involved the rearrangement pattern of the DNA coding for the chain of the T-cell receptor. Southern blot analysis showed that each clone had a unique pattern. Interestingly, clone 653 , which expresses the same idiotypic determinant as clone 3F9, had deleted the C 1 gene cluster, whereas this gene is functionally expressed in clone 3179.Abbreviations used in this paper C constant gene segment - Con A concanavalin A - CTLs cytotoxic T lymphocytes - D diversity gene segment - 3H-dThd tritiated thymidine - J joining gene segment - kb kilobase pairs - LPS lipopolysaccharide - MHC major histocompatibility complex - MLC mixed lymphocyte culture - SDS sodium dodecyl sulfate - V ariable gene segment  相似文献   

3.
An H-2D b b heterozygous tumor cell line and a variant subclone bearing a mutant gene product were used to analyze the H-2Db specificity of cytotoxic T lymphocytes (CTL) generated during a Moloney murine sarcoma virus (MSV) infection. When the mutant cells were used as targets for MSV-specific CTL, the amount of cell lysis, compared with that seen with the nonmutant parental cells, was drastically decreased. However, cells of the mutant clones remained susceptible to allogeneic CTL specific for the nonmutant H-2Db molecule. The mutant cells also did not differ from the parent cells in their level of viral antigen expression. Biochemically the parental and mutant molecules were similar but not identical. The data indicate that minor alterations of the H-2 antigens caused by somatic mutation may prevent virus-infected cells from being recognized as targets by CTL.  相似文献   

4.
Immune response (Ir) genes mapping in theI region of the mouseH-2 complex appear to regulate specifically the presentation of a number of antigens by macrophages to proliferating T cells. We have investigated the possibility that similarIr genes mapping in theH-2K andH-2D regions specifically regulate the presentation of target antigens to cytotoxic effector T cells. We report that the susceptibility of targets expressing specific non-H-2 H alloantigens to lysis by H-2-compatible, H-antigen-specific cytotoxic effector T cells is controlled by polymorphicH-2K/D genes. This control of susceptibility to lysis is accomplished through what we have defined operationally as antigen-specific regulation of non-H-2 H antigen immunogenicity. High immunogenicity of the H-4.2 alloantigen is determined by a gene mapping in theH-2K region ofH-2 b . However, high immunogenicity of H-7.1 is determined by a gene mapping in theH-2D region ofH-2 b . High immunogenicity of the H-3.1 alloantigen is determined by genes mapping in both theH-2K andH-2D regions ofH-2 b . Therefore, genes mapping in theH-2K andH-2D regions serve a function in presenting antigen to cytotoxic effector T cells. This function is analogous to that played byI-regionIr genes expressed in macrophages which present antigen to proliferating T cells. We present arguments for classification of theseH-2K/D genes as a second system ofIr genes and discuss the implications of twoH-2-linkedIr-gene systems, their possible functions, and their evolution.  相似文献   

5.
Characterization of a novel IRF-1-deficient mutant cell line   总被引:1,自引:0,他引:1  
  相似文献   

6.
The complete amino acid sequence of the CNBr fragment comprising residues 229–284 of the murine major histocompatibility complex antigen H-2Db has been determined using radiochemical methodology. The sequence was determined by N-terminal sequence analysis of the intact CNBr fragment and by sequence determinations of peptides derived from this fragment by trypsin and staphylococcal V8 protease cleavage. In addition to the amino acid assignments for H-2Db, it was possible to assign the linkage position of the third N-linked glycosyl unit to the asparagine at residue 256. Additional amino acid sequence assignments have also been made for three other CNBr fragments that span residues 99–138, 139–228, and 308–331 of the H-2Db molecule. The total protein sequence information available (222 of 338 residues) agrees in every comparable position with the protein sequence derived from the cDNA clone (pH203) isolated by Reyes and co-workers (1982b), which strongly suggests that this clone encodes H-2Db. Combination of the protein sequence with that deduced from the cDNA clone provides the complete H-2Db protein sequence. Comparison of this sequence with other available protein sequence information for murine class I molecules has revealed protein sequences that may be unique to either K or D region molecules.Abbreviations used in this paper HPLC high performance liquid chromatography - V8 Staphylococcus aureus V8 protease - MHC major histocompatibility complex  相似文献   

7.
H(KH-11) is a mouse mutant histocompatibility gene, the expression of which, as detected by skin graft rejection, requires the presence of a second gene in the graft donor which is associated with theH-2 b haplotype, but not withH-2 d. The mutant gene is not linked to theH-2 complex and may be carried and transmitted with or without expression, as predicted by classical Mendelian genetics.This research was supported by Grants CA 12662 and GM 18421 from the National Institutes of Health. We wish to express our gratitude to Dr. Ian McKenzie for performing the serological typing and to Ms. Geraldine Spencer and Mr. Ernest White for their faithful technical assistance.  相似文献   

8.
Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2Kb gene are highly susceptible to persisting Theiler''s virus infection within the CNS and subsequent demyelination, mice expressing the Db transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of Kb but encoding the peptide binding domain of Db, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric Kbα1α2Db gene (low) and Db (high) in the CNS of infected mice mirror expression levels of their endogenous H-2q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.  相似文献   

9.
We have investigated the effect of immune selection against a single gene product on a cultured mouse Friend leukemia cell line. The clonal cell line used is heterozygous at theH-2 complex and expresses theH-2 d andH-2 b haplotypes. The genes selected against were theH-2K locus alleles. Variants were obtained after a single-step selection using either antiH-2Kb or anti-H-2Kd serum. The phenotypes of the variants obtained showed an interesting asymmetry between the two haplotypes. Selection against theH 2K b allele resulted in the isolation of the two expected types of variant-those that had lost only H-2Kb and those that had lost both H-2Kb and the linked H-2Db. Selection against H-2Kd yielded, exclusively, variants that had lost both the selected antigen and the linked H-2Dd. None of the variants showed an alteration in expression of antigens intrans configuration. Karyotypic analyses of the variants revealed that all the cells had retained both copies of chromosome 17 present in the wild-type cells. The results suggest that the variants did not emerge through chromosome loss.  相似文献   

10.
A series of 16 H-2b-restricted, A influenza virus-specific cytotoxic T-cell clones are described and characterized. One is Kb restricted, the others Db restricted. The factors governing Kb or Db restriction patterns seen in the mixed populations from which clones are derived are investigated. The Kb-restricted clone does not recognize Kb mutant bm1 and influenza and all 15 Db-restricted clones do not recognize Db mutant bm14 and A influenza virus; these results are discussed in the light of findings in a variety of other viral systems. Representative Kb- and Db-restricted clones were used to assess the functional properties of cloned cosmids containing either Kb or Db genes expressed in transformed L-cells (κ haplotype). The expression products of both cosmids functioned efficiently as mutually exclusive restriction elements for A influenza virus recognition.  相似文献   

11.
The detectable presence of H (KH-11)b, a mutant non-H-2 histocompatibility gene, was previously shown to depend upon the simultaneous presence, in the skin-graft donor, of both the mutant gene and the H-2b haplotype. The experiments reported here demonstrate that H-2Db is the essential element of H-2b for this interaction. Of two H-2Db histocompatibility mutations, H-2bm13 can replace H-2Db in this interaction, but H-2bm14 cannot.  相似文献   

12.
C57BL/10 (B10) strains congenic at the mouse major histocompatibility locus (H-2) were injected with a modified ecotropic SL3-3 murine leukemia virus (MuLV) to determine the effect of the H-2 genes on the envelope gene structure of recombinant MuLVs. All tested strains rapidly developed T-cell lymphomas, and recombinant proviruses were detected in the tumor DNAs by Southern blot. The B10.D2 (H-2d), B10.Br (H-2k), B10.Q (H-2q), and B10.RIII (H-2r) strains exhibited a TI phenotype in which almost all tumors contained type I recombinants. These recombinants characteristically acquire envelope gene sequences from the endogenous polytropic viruses but retain the 5′ p15E (TM) gene sequences from the ecotropic virus. The parental B10 (H-2b) strain, however, had a novel phenotype that was designated NS for nonselective. Only 30% of the B10 tumors had detectable type I recombinants, whereas a proportion of the others appeared to contain type II recombinants that lacked the type I-specific ecotropic p15E gene sequences. Studies of other B10 congenic strains with hybrid H-2 loci and selected F1 animals revealed that the NS phenotype was regulated by a dominant gene(s) that mapped to the A region of H-2b. These results demonstrate that a host gene within the major histocompatibility complex can influence the genetic evolution of pathogenic retroviruses in vivo.  相似文献   

13.
A.BY, B10.LPa, and B10.129(5M) mice were presensitized in vivo against B10.A(5R) cells and then restimulated in vitro by the same cells in the standard CML assay. The effector cells thus generated lysed not only B10.A(5R), but also C57BL/6 targets, indicating that, in addition to anti-H-2Dd response [measured on the B10.A(5R) targets], response to minor histocompatibility (H) antigens (measured on the C57BL/6 targets) also occurred. The latter response was directed against multiple minor H antigens in the case of the A.BY effectors, and against H-1 and H-3 antigens in the case of B10.129(5M) and B10.LPa effectors, respectively. The sensitization against minor H antigens occurred in the context of H-2Kb H-2Dd antigens, but by testing the response on C57BL/6 targets, only cells reacting with minor H antigens in the context of H-2Kb were assayed. The same effector cells were then tested against H-2b mutant strains, in which theH-2K b allele was replaced by a mutant one. All three effector types [A.BY, B10.LPa, and B10.129(5M)] behaved in a similar way: they all reacted with theH-2 bg1 mutant to the same degree as withH-2 b, they did not react at all or reacted only weakly with theH-2 bd andH-2 bh mutants, and they reacted moderately or strongly with theH-2 ba mutant. The degree of crossreactivity with the mutants reflects, with one exception, the degree of relatedness of these mutants toH-2 b, as established by other methods. The one exception is theH-2 ba mutant, which is the most unrelated toH-2 b, and yet it crossreacted strongly. Further testing, however, suggested that in this instance the crossreactivity was probably directed against H-2 antigens: the anti-H-2Dd effectors apparently crossreacted with the H-2Kba antigens. This finding is an example of cell-mediated crossreactivity between the products of two differentH-2 genes (H-2K andH-2D). It is also an example of anH-2 mutation generating an antigenic determinant known to be present in another strain.  相似文献   

14.
The line B6.M505 is congenic with C57BL/6JY and carries a mutant form of theH-2 b haplotype designatedH-2 bd . The mutant site 505 was located by the F1 tests in theK end of theH-2 gene complex. The M505 mice are histoincompatible with the B6.C(Hz1) line (haplotypeH-2 ba ) carrying another mutation in theK end ofH-2 b . Inability of M505 to complement Hz1 in tests with B6 skin grafting is considered as an evidence that the same gene was altered by both mutations. The gained H antigens of two mutants can cross-react in vivo as revealed by accelerated rejection of Hz1 skin grafts by B6 recipients presensitized with M505 spleen cells. The lost antigenic determinants are not identical as shown by accelerated rejection of B6 skin grafts by Hz1 hosts preimmunized with M505 spleen cells. Absorptions of the antiserum ASY-015, (d×a) anti-i, anti-H-2.33 with M505 spleen cells did not clear forH-2 i ,H-2 b andH-2 ba , and absorptions with Hz1 did not clear forH-2 i ,H-2 b , andH-2 bd . These results show that changes of histocompatibility determinants may be accompanied by loss of some haptenic determinants in the Hz1 and M505 mutations.  相似文献   

15.
The secondary cytotoxic responses to the male-specific antigen (H-Y) in mice showH-2 restriction so that the cytotoxic female cell must share the K- and/or D-end antigen with the male target cells. The association with the K and/or D end varies with differentH-2 haplotypes,e.g., H-2 b cytotoxic cells require the H-2Db antigen(s) on the target cells, while cytotoxic cells fromH-2 b/H-2 d F1 mice sensitized toH-2 d male cells kill only male targets having H-2Kd antigen(s). This association of H-Y with appropriate K/D antigens seems to be needed also in the induction of the cytotoxic response. Of the independent haplotypes, onlyH-2 b strains are capable of making secondary anti-H-Y responses and this trait seems to be dominant,i.e., the F1 strains with oneH-2 b parent are able to produce anti-H-Y cytotoxic cells against both theH-2 b parent and the nonresponder parent. The mating of the two nonresponder strains may produce F1 mice which are responders, thus suggestingIr gene complementation. Mapping data indicates that at least one of these complementary genes is located in theI-C region fork/s complementation.  相似文献   

16.
The immune response patterns of inbred and congenic strains of mice against terpolymers poly(glu57lys38ala5) and poly(glu54lys36ala10) have been studied. Initial recognition of the polymers is ascribed to ‘GA’ receptors (Ir-GA gene product) on T cells of mice ofH-2 haplotypes,a,b,f,k ands, and ‘GL’ receptors (Ir-GL gene product) of mice ofH-2 p,H-2 q andH-2 j haplotypes, and to GA and/or GL receptors of mice ofH- 2d andH- 2r haplotypes. The specificity of the antibody is directed predominantly against GL. The inability to elicit antibody with GA specificity has been ascribed to the lack of significant concentrations of GA sequences in the polymers to interact with appropriate receptors on B cells. The weakest responders were mice of H-2b haplotype. F1 hybrids (responders×nonresponders) were all responders demonstrating the dominant character of responsiveness. Wide variations in antibody levels produced among strains of mice of theH-2 k andH-2 b haplotypes are ascribed to genes not linked toH-2.  相似文献   

17.
Neonatal transplantation tolerance to the products of theH-2 b complex was induced in B10.A (H-2 a ) mice. On the basis of the survival of skin allografts it was found that antigens determined by theD region of theH-2 b complex (of the B10.A(2R) strain) were most easily overcome and that tolerance to the products of theD end of theH-2 complex (of the B10.A(4R) strain) was also easy to induce. The antigens produced by theK end ofH-2 (of the B10.A(5R) and B10.A(3R) strains) represented a stronger incompatibility barrier and a difference in the entireH-2 b complex caused strongest resistance to tolerance induction. When tolerance to the products of the entireH-2 b complex was induced in newborn B10.A mice, and the neonatally treated animals were grafted simultaneously with five different grafts, those disparate at theK end ofH-2 and in the entireH-2 region were rejected in some animals, while the grafts disparate at theD end of H-2 remained intact in the same mice. No dependence on theI-J subregion was observed in this system. Furthermore, tolerance was more easily inducible in male than in female B10.A mice.  相似文献   

18.
Moloney leukemia virus-specific cytotoxic T lymphocytes (CTL), generated by secondary in vitro stimulation of spleen cells with syngeneic virus-infected cells, frequently lysed not only syngeneic virus-infected cells, but also noninfected allogeneic target cells. This phenomenon was studied with B6(H-2 b ) responder cells and a series of H-2K b -mutant responder cells. Thus, B6 Moloney-specific CTL lysed noninfected K b -mutant cells, but not B6 cells, whereas K b -mutant Moloney-specific CTL lysed noninfected B6 cells and not noninfected cells of the same mutant. Cold-target-inhibition studies showed that the CTL reactions against different allogeneic cells were mediated by different subpopulations of virus-specific CTL: lysis of allogeneic target cells was fully inhibited only by the same allogeneic and by syngeneic virus-infected cells, but not by another allogeneic cell, also lysed by the same effector-cell population. Lysis of syngeneic virus-infected cells could not be inhibited by allogeneic target cells. These data imply that a minority of virus-specific CTL shows cross-reactivity with a given allogeneic target cell. It is concluded that limited amino acid substitutions in the Kb molecule alter the repertoire of Moloney virus-specific CTL, as reflected in alloreactive CTL populations, even though the virus-specific CTL response. of B6 and all K b mutants is mainly Db-restricted. Thus, the development of tolerance to self class-I major histocompatibility complex (MHC) molecules affects the repertoire of self-restricted cytotoxic T cells.  相似文献   

19.
TheH-2 restriction pattern of cytolytic T lymphocytes (Tc) and T lymphocytes which mediate a delayed-type hypersensitivity response (Td) directed against infectious Sendai virus was investigated usingH-2 mutant mice. Td and Tc lymphocytes exhibit the same fine specificity for self-recognition, for example, B6.C-H- 2bm1 effector T cells were unable to recognize viral antigens in association with wild-type Kb and vice versa, B6.-H- 2bm6 effector cells did not mediate a reaction against virus plus wild-type Kb but, on the other hand, T cells of wild-type Kb recognized virus plus Kbm6.BALB/c-H- 2dm2 T cells lacked reactivity against virus in association with wild-type Dd, but again wild-type Dd effector cells recognized virus plus Ddm2.Abbreviations used in this paper DTH delayed-type hypersensitivity - EID50 mean egg infective dose - FCS fetal calf serum - HAU hemagglutinating units - LPS lipopolysaccharide - Ly(–) low amount of Ly antigens - MHC major histocompatibility complex - 2-ME 2-mercaptoethanol - PBS phosphate-buffered saline - Tc cytolytic T cell - Td T cell which mediates a delayed-type hypersensitivity reaction  相似文献   

20.
Thirty B10.W congenic lines were analysed serologically, both by direct cytotoxicity and by absorption, for the presence of H-2L antigens. Three new H-2L antigens, 73, 74, and 75, were discovered. The B10.W lines and the inbred strains can be classified into at least six H-2L phenogroups on the basis of their reactivity withH- 2dm2 anti-H- 2d serum: BALB/c, B10.BUA1, B10.GAA37, B10.BUA16. B10.KPB128, and the negative group. Twenty-oneD-end recom-binants were analysed for the possible separation ofH-2D andH-2L loci. The failure to find such a separation indicates that theH-2D andH-2L loci are tightly linked. Serological analysis also indicated that theH- 2dm1 has lost most of its H-2L antigens but retained at least one specificity which can be detected byH- 2dm2 anti-H- 2d serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号