首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report that Gryllus bimaculatus dachshund (Gbdac), a cricket homologue of Drosophila dachshund (Dmdac), is expressed in the developing eye and brain. During brain development, Gbdac was first expressed in the medial head region, corresponding to a part of developing protocephalic region, and expressed in the primordial and adult Kenyon cells. During eye development, Gbdac was first expressed in the lateral head region, becoming to the eye primordium and a part of the deutocerebrum. Then, Gbdac was expressed in the posterior region of the eye primordium, prior to the formation of compound eyes. The expression domain shifted to the anterior domain concomitantly with the movement of morphogenetic furrows. Gbdac was also expressed in the developing optic lobes during differentiation of the retina. These expression patterns were compared with those of Dmdac. We found that although developmental processes of the Gryllus eye and brain differ from those of the Drosophila ones, the expression patterns of Gbdac are essentially similar to those of the Dmdac.  相似文献   

2.
The formation of different structures in Drosophila depends on the combined activities of selector genes and signaling pathways. For instance, the antenna requires the selector gene homothorax, which distinguishes between the leg and the antenna and can specify distal antenna if expressed ectopically. Similarly, the eye is formed by a group of "eye-specifying" genes, among them eyeless, which can direct eye development ectopically. We report here the characterization of the hernandez and fernandez genes, expressed in the antennal and eye primordia of the eye-antenna imaginal disc. The predicted proteins encoded by these two genes have 27% common amino acids and include a Pipsqueak domain. Reduced expression of either hernandez or fernandez mildly affects antenna and eye development, while the inactivation of both genes partially transforms distal antenna into leg. Ectopic expression of either of the two genes results in two different phenotypes: it can form distal antenna, activating genes like homothorax, spineless, and spalt, and it can promote eye development and activates eyeless. Reciprocally, eyeless can induce hernandez and fernandez expression, and homothorax and spineless can activate both hernandez and fernandez when ectopically expressed. The formation of eye by these genes seems to require Notch signaling, since the induction of ectopic eyes and the activation of eyeless by the hernandez gene are suppressed when the Notch function is compromised. Our results show that the hernandez and fernandez genes are required for antennal and eye development and are also able to specify eye or antenna ectopically.  相似文献   

3.
4.
5.
During the development of the Drosophila wing, the activity of the Notch signalling pathway is required to establish and maintain the organizing activity at the dorsoventral boundary (D/V boundary). At early stages, the activity of the pathway is restricted to a small stripe straddling the D/V boundary, and the establishment of this activity domain requires the secreted molecule fringe (fng). The activity domain will be established symmetrically at each side of the boundary of Fng-expressing and non-expressing cells. Here, I present evidence that the Drosophila tumour-suppressor gene lethal (2) gaint discs (lgd) is required to restrict the activity of Notch to the D/V boundary. In the absence of lgd function, the activity of Notch expands from its initial domain at the D/V boundary. This expansion requires the presence of at least one of the Notch ligands, which can activate Notch more efficiently in the mutants. The results further suggest that Lgd appears to act as a general repressor of Notch activity, because it also affects vein, eye, and bristle development.  相似文献   

6.
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP.  相似文献   

7.
8.
9.
The Anlage of the Drosophila visual system, called eye field, comprises a domain in the dorso-medial neurectoderm of the embryonic head and is defined by the expression of the early eye gene sine oculis (so). Beside the eye and optic lobe, the eye field gives rise to several neuroblasts that contribute their lineages to the central brain. Since so expression is only very short lived, the later development of these neuroblasts has so far been elusive. Using the P-element replacement technique [Genetics, 151 (1999) 1093] we generated a so-Gal4 line driving the reporter gene LacZ that perdures in the eye field derived cells throughout embryogenesis and into the larval period. This allowed us to reconstruct the morphogenetic movements of the eye field derived lineages, as well as the projection pattern of their neurons. The eye field produces a dorsal (Pc1/2) and a ventral (Pp3) group of three to four neuroblasts each. In addition, the target neurons of the larval eye, the optic lobe pioneers (OLPs) are derived from the eye field. The embryonically born (primary) neurons of the Pp3 lineages spread out at the inner surface of the optic lobe. Together with the OLPs, their axons project to the dorsal neuropile of the protocerebrum. Pp3 neuroblasts reassume expression of so-Gal4 in the larval period and produce secondary neurons whose axonal projection coincides with the pattern formed by the primary Pp3 neurons. Several other small clusters of neurons that originate from outside the eye field, but have axonal connections to the dorsal protocerebrum, also express so and are labeled by so-Gal4 driven LacZ. We discuss the dynamic pattern of the so-positive lineages as a tool to reconstruct the morphogenesis of the larval brain.  相似文献   

10.
Drosophila teashirt (tsh) is involved in the patterning of the trunk identity together with the Hox genes. In addition, it is also a player in the Wingless and the Hedgehog pathways. In birds and mammals, three Tshz genes are identified and the expression patterns for mouse Tshz1 and Tshz2 have been reported during embryogenesis. Recently, we showed that all three mouse Tshz genes can rescue the Drosophila tsh loss-of-function phenotype, indicating that the function of the teashirt genes has been conserved during evolution. Here we describe the expression pattern of chick TSHZ3 during embryogenesis. Chick TSHZ3 is expressed in several tissues including mesodermal derivatives, the central and peripheral nervous systems. Emphasis is laid on the dynamic expression occurring in regions of the somites and limbs where tendons develop. We show that TSHZ3 is activated in the somites by FGF8, a known inducer of the tendon marker SCX.  相似文献   

11.
The teashirt (tsh) gene has dorso-ventral (DV) asymmetric functions in Drosophila eye development: promoting eye development in dorsal and suppressing eye development in ventral by Wingless mediated Homothorax (HTH) induction [Development 129 (2002) 4271]. We looked for DV spatial cues required by tsh for its asymmetric functions. The dorsal Iroquois-Complex (Iro-C) genes and Delta (Dl) are required and sufficient for the tsh dorsal functions. The ventral Serrate (Ser), but not fringe (fng) or Lobe (L), is required and sufficient for the tsh ventral function. We propose that DV asymmetric function of tsh represents a novel tier of DV pattern regulation, which takes place after the spatial expression patterns of early DV patterning genes are established in the eye.  相似文献   

12.
Patterning in multi-cellular organisms involves progressive restriction of cell fates by generation of boundaries to divide an organ primordium into smaller fields. We have employed the Drosophila eye model to understand the genetic circuitry responsible for defining the boundary between the eye and the head cuticle on the ventral margin. The default state of the early eye is ventral and depends on the function of Lobe (L) and the Notch ligand Serrate (Ser). We identified homothorax (hth) as a strong enhancer of the L mutant phenotype of loss of ventral eye. Hth is a MEIS class gene with a highly conserved Meis-Hth (MH) domain and a homeodomain (HD). Hth is known to bind Extradenticle (Exd) via its MH domain for its nuclear translocation. Loss-of-function of hth, a negative regulator of eye, results in ectopic ventral eye enlargements. This phenotype is complementary to the L mutant phenotype of loss-of-ventral eye. However, if L and hth interact during ventral eye development remains unknown. Here we show that (i) L acts antagonistically to hth, (ii) Hth is upregulated in the L mutant background, and (iii) MH domain of Hth is required for its genetic interaction with L, while its homeodomain is not, (iv) in L mutant background ventral eye suppression function of Hth involves novel MH domain-dependent factor(s), and (v) nuclear localization of Exd is not sufficient to mediate the Hth function in the L mutant background. Further, Exd is not a critical rate-limiting factor for the Hth function. Thus, optimum levels of L and Hth are required to define the boundary between the developing eye and head cuticle on the ventral margin.  相似文献   

13.
Here we report a quick functional analysis of two mammalian serine/threonine kinases, a serum inducible kinase (Snk) and Homo sapiens hepatoma protein kinase (HsHPK), using Drosophila eye as a model system. We generated transgenic fly lines carrying constructs of both kinases under control of the GAL upstream activating sequence (UAS). Each UAS line was then crossed to a line in which GAL4 expression was driven by one of the following promoters, eyeless (ey), glass or decapentaplegic. Thus, different kinase mutants can be ectopically expressed in a promoter-dependent manner. We observed that the ectopic expression of either the wild-type or active form of Snk driven by the glass promoter resulted in a rough-eye phenotype. Nevertheless, the ectopic expression of HsHPK under the control of the ey promoter resulted in a small-eye phenotype. The results of this study demonstrated that ectopic expression of these two mammalian genes could be achieved by the regulation of Drosophila promoters. In addition, the effects of these ectopically expressed genes on eye development could be an implication of their functions with respect to cell proliferation and differentiation. Thus, Drosophila eye, with the powerful genetic tools and vast information on eye development available, can be a useful system to probe the functions of mammalian genes in the postgenome era.  相似文献   

14.
eyeless (ey) is a key regulator of the eye development pathway in Drosophila. Ectopic expression of ey can induce the expression of several eye-specification genes (eya, so, and dac) and induce eye formation in multiple locations on the body. However, ey does not induce eye formation everywhere where it is ectopically expressed, suggesting that EY needs to collaborate with additional factors for eye induction. We examined ectopic eye induction by EY in the wing disc and found that eye induction was spatially restricted to the posterior compartment and the anterior-posterior (A/P) compartmental border, suggesting a requirement for both HH and DPP signaling. Although EY in the anterior compartment induced dpp and dac, these were not sufficient for eye induction. Coexpression experiments show that EY needs to collaborate with high level of HH and DPP to induce ectopic eye formation. Ectopic eye formation also requires the activation of an eye-specific enhancer of the endogenous hh gene.  相似文献   

15.
16.
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.  相似文献   

17.
18.
The Drosophila Pax-6 gene eyeless (ey) plays a key role in eye development. Here we show tht Drosophila contains a second Pax-6 gene, twin of eyeless (toy), due to a duplication during insect evolution. Toy is more similar to vertebrate Pax-6 proteins than Ey with regard to overall sequence conservation, DNA-binding function, and early expression in the embryo, toy and ey share a similar expression pattern in the developing visual system, and targeted expression of Toy, like Ey, induces the formation of ectopic eyes. Genetic and biochemical evidence indicates, however, that Toy functions upstream of ey by directly regulating the eye-specific enhancer of ey. Toy is therefore required for initiation of ey expression in the embryo and acts through Ey to activate the eye developmental program.  相似文献   

19.
Drosophila eye development is under the control of early eye specifying genes including eyeless (ey), twin of eyeless (toy), eyes absent (eya), dachshund (dac) and sine oculis (so). They are all conserved between vertebrates and insects and they interact in a combinatorial and hierarchical network to regulate each other expression. so has been shown to be directly regulated by ey through an eye-specific enhancer (so10). We further studied the regulation of this element and found that both Drosophila Pax6 proteins namely EY and TOY bind and positively regulate so10 expression through different binding sites. By targeted mutagenesis experiments, we disrupted these EY and TOY binding sites and studied their functional involvement in the so10 enhancer expression in the eye progenitor cells. We show a differential requirement for the EY and TOY binding sites in activating so10 during the different stages of eye development. Additionally, in a rescue experiment performed in the so(1) mutant, we show that the EY and TOY binding sites are required for compound eye and ocellus development respectively. Altogether, these results suggest a differential requirement for EY and TOY to specify the development of the two types of adult visual systems, namely the compound eye and the ocellus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号