首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene flow is a crucial parameter that can affect the organization of genetic diversity in plant species. It has important implications in terms of conservation of genetic resources and of gene exchanges between crop to wild relatives and within crop species complex. In the Beta vulgaris complex, hybridization between crop and wild beets in seed production areas is well documented and the role of the ensuing hybrids, weed beets, as bridges towards wild forms in sugar beet production areas have been shown. Indeed, in contrast to cultivated beets that are bi-annual, weed beets can bolt, flower and reproduce in the same crop season. Nonetheless, the extent of pollen gene dispersal through weedy lineages remains unknown. In this study, the focus is directed towards weed-to-weed gene flow, and we report the results of a pollen-dispersal analysis within an agricultural landscape composed of five sugar beet fields with different levels of infestation by weed beets. Our results, based on paternity analysis of 3240 progenies from 135 maternal plants using 10 microsatellite loci, clearly demonstrate that even if weedy plants are mostly pollinated by individuals from the same field, some mating events occur between weed beets situated several kilometres apart (up to 9.6 km), with rates of interfield-detected paternities ranging from 11.3% to 17.5%. Moreover, we show that pollen flow appears to be more restricted when individuals are aggregated as most mating events occurred only for short-distance classes. The best-fit dispersal curves were fat-tailed geometric functions for populations exhibiting low densities of weed beets and thin-tailed Weibull function for fields with weed beet high densities. Thus, weed beet populations characterized by low density with geographically isolated individuals may be difficult to detect but are likely to act as pollen traps for pollen emitted by close and remote fields. Hence, it appears evident that interfield pollen-mediated gene flow between weed beets is almost unavoidable and could contribute to the diffusion of (trans)genes in the agricultural landscape.  相似文献   

2.
Gene flow and introgression from cultivated to wild plant populations have important evolutionary and ecological consequences and require detailed investigations for risk assessments of transgene escape into natural ecosystems. Sugar beets (Beta vulgaris ssp. vulgaris) are of particular concern because: (i) they are cross-compatible with their wild relatives (the sea beet, B. vulgaris ssp. maritima); (ii) crop-to-wild gene flow is likely to occur via weedy lineages resulting from hybridization events and locally infesting fields. Using a chloroplastic marker and a set of nuclear microsatellite loci, the occurrence of crop-to-wild gene flow was investigated in the French sugar beet production area within a 'contact-zone' in between coastal wild populations and sugar beet fields. The results did not reveal large pollen dispersal from weed to wild beets. However, several pieces of evidence clearly show an escape of weedy lineages from fields via seed flow. Since most studies involving the assessment of transgene escape from crops to wild outcrossing relatives generally focused only on pollen dispersal, this last result was unexpected: it points out the key role of a long-lived seed bank and highlights support for transgene escape via man-mediated long-distance dispersal events.  相似文献   

3.
Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops-to-crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level.  相似文献   

4.
 Beets belonging to the species Beta vulgaris L. can be found in crop, wild and weedy forms, all of which are interfertile. We studied the intra-specific genetic relationships of about 300 individuals from 54 populations of various French geographic origins using nuclear molecular markers (five single-copy RFLP loci and one microsatellite locus). The patterns of diversity were congruent for both types of markers. Genetic diversity in wild beets appeared to be high, both in term of allele number and observed heterozygosity, whereas the narrowness of the cultivated-beet gene pool was confirmed. Genetic distances between all forms showed that weed beets in northern France are intermediates between sugar beet and inland wild beets in south-western France. This analysis allowed us to infer the paternal origin of weed beets and furthermore, is in agreement with a previous study which focused on their maternal origin: weed beet infesting sugar-beet fields originated from accidental and recurrent hybridization between cultivated lines and ruderal inland wild beets during the production of commercial seeds in south-western France. Inland wild beets are genetically close to Mediterranean coastal wild beets, but differ from other coastal forms (from Biscay, Brittany and northern France). The study of gene flow in the beet complex contributes to the risk assessment of transgenic beets. Received: 8 June 1998 / Accepted: 8 October 1998  相似文献   

5.
Reciprocal gene exchange between cultivated sugar beet and wild beets in seed production areas is probably the reason for the occurence of weed beets in sugar beet production fields. Therefore, when releasing transgenic sugar beet plants into the environment, gene transfer to wild beets ( Beta vulgaris ssp. maritima ) has to be considered. In this study the transfer of BNYVV- (beet necrotic yellow vein virus) resistance and herbicide-tolerance genes from two transgenic sugar beet lines that were released in field experiments in 1993 and 1994 in Germany to different wild beet accessions was investigated. In order to evaluate the consequences of outcrossing, manual pollinations of emasculated wild beet plants with homozygous transgenic sugar beet plants were performed. In the resulting hybrids the transgenes were stably inherited according to Mendelian law. Gene expression in leaves and roots of the hybrids was in the same range as in the original transgenic sugar beet plants. Moreover, it was found that in one of the wild beet accessions, transfer and expression of the BNYVV resistance gene did considerably increase the level of virus resistance.  相似文献   

6.
Hybridization between cultivated species and their wild relatives is now widely considered to be common. In the Beta vulgaris complex, the sugar beet seed multiplication areas have been the scene of inadvertent pollination of sugar beet seed bearers by wild ruderal pollen donors, generating a weedy form of beet which infests sugar beet fields in European countries. Up to now, investigations of evolutionary dynamics of genetic diversity within the B. vulgaris complex were addressed using few genetical markers and few accessions. In this study, we tackled this issue using a panel of complementary markers: five nuclear microsatellite loci, four mitochondrial minisatellite loci and one chloroplastic PCR-RFLP marker. We sampled 1,640 individuals that illustrate the actual distribution of inland ruderal beets of South Western France, weed beets and wild sea beets of northern France as well as the diversity of 35 contemporary European diploid cultivars. Nuclear genetic diversity in weed beets appeared to be as high as those of ruderal beets and sea beets, whereas the narrowness of cultivar accessions was confirmed. This genetic bottleneck in cultivars is even more important in the cytoplasmic genome as only one haplotype was found among all sugar beet cultivars. The large majority of weed beet populations also presented this unique cytoplasmic haplotype, as expected owing to their maternal cultivated origin. Nonetheless, various cytoplasmic haplotypes were found within three populations of weed beets, implying wild-to-weed seed flows. Finally, our findings gave new insights into the genetical relationships between the components of the B. vulgaris complex: (1) we found a very strong genetic divergence between wild sea beet and other relatives, which was unexpected given the recent evolutionary history and the full cross-compatibility of all taxa and (2) we definitely confirmed that the classification into cultivated, wild, ruderal and weed forms according to their geographical location, phenotype or their domesticated status is clearly in accordance with genetic clustering despite the very recent domestication process of sugar beet. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Populations of weed beets have expanded into European sugar beet production areas since the 1970s, thereby forming a serious new weed problem for this crop. We sampled seeds in different French populations and studied mitochondrial DNA, chloroplast DNA and life-cycle variability. Given the maternal inheritance of the mitochondrial and chloroplastic genomes and the nuclear determinism of the annual habit, we were able to determine the maternal origin and evolution of these weed beet populations. Our study shows that they carry the dominant allele B for annual habit at high frequency. The main cytoplasmic DNA type found in northern weed beet populations is the cytoplasmic male-sterile type characteristic of sugar beets. We were able to determine that these populations arise from seeds originating from the accidental pollinations of cultivated beets by adventitious beets in the seed production area, which have been transported to the regions where sugar beets are cultivated. These seeds are supposedly the origin of the weed forms and a frequently disturbed cultivated environment has selected for annual habit and early flowering genotypes. We discuss the consequences of the weed beet populations for the breeding, seed production and release of herbicide-resistant transgenic sugar beets.  相似文献   

8.
Effects of increasing weed-beet density on sugar-beet yield and quality   总被引:1,自引:0,他引:1  
Weed beets are an increasing problem in many sugar-beet crops in many countries. At present about one sugar-beet field in four in England is infested with weed-beet seed. Control in other crops can be achieved using selective herbicides but in sugar beet the weed beets, many of which are of annual habit, are not easily controlled and often compete with the crop. Experiments were done to quantify the yield loss caused by weed beet in sugar-beet crops. Transects were laid out across three fields in 1985 and 1986 and plots located thereon to include the range of weed-beet densities found in the field. Weed beet did not affect the concentration of sugar (sucrose), potassium, sodium, α amino nitrogen or invert sugar in the crop beets. Root and sugar yields were progressively reduced by increasing densities of weed beet. A rectangular hyperbola described the data slightly better than an asymptotic model. There was no indication of a threshold density of weed beet below which there was no yield loss, which averaged 11.7% for each weed beet plant/m2. This corresponds to an average 0.6% sugar yield loss for each 1% of bolted weed beet in the root crop up to 100%, which is similar to the reported losses resulting from bolters in the root crop.  相似文献   

9.
Crop-wild hybrids and weed beets are the main source of agronomic concern for sugar beet production all over Europe. In order to understand the dynamics of crop-wild interactions and the evolution of weediness in Beta vulgaris, we investigated genetic features of bolting individuals occurring at a local scale, i.e. within two sugar beet fields of the French northern area of sugar beet production. By analysing ploidy level, mitochondrial DNA and microsatellite polymorphism, the genetic diversity and the genetic relationships among three different classes of individuals (variety, in-row and out-row weed-beets) from a given field were examined. Such genetic analyses provide a unique opportunity to obtain evidence for the weeds origin and the evolutionary hypotheses previously stated. All the individuals shared in common the Svulg mitochondrial haplotype, and thus a common maternal origin. Conversely, the large genetic diversity at microsatellite loci highlighted the large diversity of the pollinator plants (cultivated and wild plants) during the-seed production process, as well as during the further evolution of weed beets in the sugar production area. Received: 23 April 2001 / Accepted: 15 June 2001  相似文献   

10.
Gene flow from crops to wild related species has been recently under focus in risk-assessment studies of the ecological consequences of growing transgenic crops. However, experimental studies addressing this question are usually temporally or spatially limited. Indirect population-structure approaches can provide more global estimates of gene flow, but their assumptions appear inappropriate in an agricultural context. In an attempt to help the committees providing advice on the release of transgenic crops, we present a new method to estimate the quantity of genes migrating from crops to populations of related wild plants by way of pollen dispersal. This method provides an average estimate at a landscape level. Its originality is based on the measure of the inverse gene flow, i.e. gene flow from the wild plants to the crop. Such gene flow results in an observed level of impurities from wild plants in crop seeds. This level of impurity is usually known by the seed producers and, in any case, its measure is easier than a direct screen of wild populations because crop seeds are abundant and their genetic profile is known. By assuming that wild and cultivated plants have a similar individual pollen dispersal function, we infer the level of pollen-mediated gene flow from a crop to the surrounding wild populations from this observed level of impurity. We present an example for sugar beet data. Results suggest that under conditions of seed production in France (isolation distance of 1,000 m) wild beets produce high numbers of seeds fathered by cultivated plants. Received: 5 February 2001 / Accepted: 26 March 2001  相似文献   

11.
Introgression arising from crop-to-wild gene flow provides novel sources of genetic variation in plant species complexes. Hybridization within the Beta vulgaris species complex is of immediate concern; crop lineages ( B .  vulgaris ssp. vulgaris ) hybridize easily with their wild relatives ( B .  vulgaris ssp. maritima ) thereby threatening wild beet gene diversity with genetic swamping. Hybridization 'hotspots' occur in European seed production areas because inland ruderal wild beets occur and reproduce in sympatry with cultivated beets. We studied gene flow occurring between seed-producing cultivars and ruderal wild B .  vulgaris in southwestern France to determine whether feral beets, arising from unharvested cultivated seed, represent an opportunity for crop-to-wild gene flow. We surveyed 42 inland ruderal beet populations located near seed production fields for nucleo-cytoplasmic variation and used a cytoplasmic marker diagnostic of cultivated lines. Occurrence of cultivated-type cytoplasm within ruderal populations clearly reflected events of crop seed escape. However, we found no genetic signatures of nuclear cultivated gene introgression, which suggests past introgression of cultivated cytoplasm into a wild nuclear background through seed escape rather than recent direct pollen flow. Overall, patterns of genetic structure suggested that inland ruderal wild beet populations act as a metapopulation, with founding events involving a few sib groups, followed by low rates of seed or pollen gene flow after populations are established. Altogether, our results indicate that a long-lived seed bank plays a key role in maintaining cultivated-type cytoplasm in the wild and highlight the need for careful management of seed production areas where wild and cultivated relatives co-occur.  相似文献   

12.
In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.  相似文献   

13.
Gene flow and introgression from cultivated plants may have important consequences for the conservation of wild plant populations. Cultivated beets (sugar beet, red beet and Swiss chard: Beta vulgaris ssp. vulgaris) are of particular concern because they are cross-compatible with the wild taxon, sea beet (B.vs. ssp. maritima). Cultivated beet seed production areas are sometimes adjacent to sea beet populations; the numbers of flowering individuals in the former typically outnumber those in the populations of the latter. In such situations, gene flow from cultivated beets has the potential to alter the genetic composition of the nearby wild populations. In this study we measured isozyme allele frequencies of 11 polymorphic loci in 26 accessions of cultivated beet, in 20 sea beet accessions growing near a cultivated beet seed production region in northeastern Italy, and 19 wild beet accessions growing far from seed production areas. We found one allele that is specific to sugar beet, relative to other cultivated types, and a second that has a much higher frequency in Swiss chard and red beet than in sugar beet. Both alleles are typically rare in sea beet populations that are distant from seed production areas, but both are common in those that are near the Italian cultivated beet seed production region, supporting the contention that gene flow from the crop to the wild species can be substantial when both grow in proximity. Interestingly, the introgressed populations have higher genetic diversity than those that are isolated from the crop. The crop-to-wild gene flow rates are unknown, as are the fitness consequences of such alleles in the wild. Thus, we are unable to assess the long-term impact of such introgression. However, it is clear that gene flow from a crop to a wild taxon does not necessarily result in a decrease in the genetic diversity of the native plant.  相似文献   

14.
Arnaud JF  Cuguen J  Fénart S 《Heredity》2011,107(5):395-404
This study explores the microspatial and temporal genetic variation in crop-wild hybrid weed beets that emerged from the seed bank in a cultivated field surveyed over two successive years. We demonstrate the occurrence of demes highly genetically differentiated, kin-structured, characterized by moderate effective population sizes, differing in propensity for selfing, and arising from nonrandom genetic subsets of the seed bank. Only one deme identified in the first survey year significantly contributed to the weed beets that emerged in the second year. Spatial structuring appears to be primarily due to gravity seed dispersal and limited pollen flow among weed beet demes. Within each genetic cluster identified by Bayesian assignments and multivariate analyses, F(IS) estimates and level of biparental inbreeding--revealed by progeny analyses--dropped to non-significant values. This suggests that random mating occurs at the scale of genetically distinct demes over a very short scale. Our results highlight the need to carefully depict genetic discontinuities in weed species, when attempting to describe their local genetic neighborhoods within which genetic drift and selective processes occur.  相似文献   

15.
 In order to help establish a basis for the assessment of gene flow associated with the large-scale release of transgenic oilseed rape, we previously designed a method which makes it possible to retrieve the average pollen dispersal of a single plant from that of a large source plot. The ‘individual’ pollen distribution thus obtained is less dependent on the experimental design than pollen distributions usually published and could therefore be used to model the possible escape of a transgene from commercial transgenic crops. In this study we report on a field experiment set up to study the pollen dispersal from an herbicide-resistant transgenic variety of oilseed rape and to test the applicability of the method on the experimental data. Two techniques were used to determine the individual pollen dispersal, and their outcomes are compared. The results suggest that approximately half of the pollen produced by an individual plant fell within 3 m and that the probability of fertilisation afterwards decreased slowly along a negative exponential of the distance. Comparison with the global pollen distribution from the source plot indicates that pollen-dispersal distributions based on dispersal from whole plots instead of individual plants would have underestimated the proportion of pollen that was dispersed over average or long distances. Received: 20 September 1997 / Accepted: 28 October 1997  相似文献   

16.
One of the most discussed environmental effects associated with the use of transgenic plants is the flow of genes to plants in the environment. The flow of genes may occur through pollen since it is the reproductive system that is designed for gene movement. Pollen-mediated gene escape is hard to control in mating plants. Pollen from a wind pollinator can move over distances of more than 1000 m. To investigate the efficiency of transgenic pollen movement under realistic environmental conditions, the use of bait plants might be an effective tool. In this study, cytoplasmic male-sterile (CMS) sugar beets were tested with regard to their potential for monitoring transgene flow. As the pollen source, transgenic sugar beets were used that express recombinant DNA encoding viral (beet necrotic yellow vein virus) resistance, and antibiotic (kanamycin) and herbicide (glufosinate) tolerance genes. In a field trial, the effectiveness of a hemp (Cannabis sativa) stripe containment strategy was tested by measuring the frequency of pollinated CMS bait plants placed at different distances and directions from a transgenic pollen source. The results demonstrated the ineffectiveness of the containment strategy. Physiological and molecular tests confirmed the escape and production of transgenic offspring more than 200 m behind the hemp containment. Since absolute containment is unlikely to be effective, the CMS-bait plant detection system is a useful tool for other monitoring purposes.  相似文献   

17.
The egg parasitoid Anagrus nigriventris Girault is an important natural enemy of the beet leafhopper, Circulifer tenellus (Baker) which has a broad host range that includes cultivated sugar beets and the weed, Russian thistle. When parasitoids were reared on leafhopper eggs deposited in sugar beets, females were attracted to sugar beet volatiles and preferred them over a blank control and over Russian thistle volatiles in Y- tube olfactometer tests. No preference was detected for either plant by female wasps that were reared on Russian thistle. Wasps reared on Russian thistle and allowed an oviposition experience on sugar beet showed a strong attraction to sugar beet volatiles; however, wasps reared on sugar beets and allowed oviposition experience on Russian thistle demonstrated no preference between the two plants. The implications of parasitoid response towards plant volatiles and their importance in biological control are discussed.  相似文献   

18.
Previous studies had shown that recombinant DNA can be detected for several months in soil after the deposition of litter from transgenic (tg) plants. Here we show by PCR monitoring of field releases of tg sugar beet plants that during the growth of the plants the soil close to the plants and also plant material contains recombinant DNA, in the form of extracellular molecules. Surprisingly, the monitoring also revealed the presence of tg DNA in many field plots (30–70%) in which tg plants were never grown. These studies and the further monitoring during other tg sugar beet release experiments by PCR and a novel bioassay (measuring the transforming potential of recombinant DNA for Pseudomonas stutzeri) indicated that recombinant DNA was only detectable in the surface soil of field plots and their vicinity where flowering of the tg beet plants was allowed. Recombinant DNA was found in soil at a distance of 50 m from pollen-producing plants surrounded by a strip with hemp plants as a containment regime. It is concluded that recombinant DNA is deposited in soil during the growth of tg sugar beets and that a major mechanism of recombinant DNA spread in the environment is the dispersal of pollen which allows recombinant DNA to persist in the field plot for at least a year.  相似文献   

19.
Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow.  相似文献   

20.
We present draft genome assemblies of Beta patula, a critically endangered wild beet endemic to the Madeira archipelago, and of the closely related Beta vulgaris ssp. maritima (sea beet). Evidence‐based reference gene sets for B. patula and sea beet were generated, consisting of 25 127 and 27 662 genes, respectively. The genomes and gene sets of the two wild beets were compared with their cultivated sister taxon B. vulgaris ssp. vulgaris (sugar beet). Large syntenic regions were identified, and a display tool for automatic genome‐wide synteny image generation was developed. Phylogenetic analysis based on 9861 genes showing 1:1:1 orthology supported the close relationship of B. patula to sea beet and sugar beet. A comparative analysis of the Rz2 locus, responsible for rhizomania resistance, suggested that the sequenced B. patula accession was rhizomania susceptible. Reference karyotypes for the two wild beets were established, and genomic rearrangements were detected. We consider our data as highly valuable and comprehensive resources for wild beet studies, B. patula conservation management, and sugar beet breeding research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号