首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
The Cytochrome P450 (CYP) proteins are a family of membrane bound proteins that function as a major metabolizing enzyme in the human body. Quantification of CYP induction is critical in determining the disposition, safety and efficacy of drugs in humans. Described is a gel-free, high-throughput LC-MS approach to quantitate the CYP isoforms 1A2, 2B6, 3A4 and 3A5 by measuring isoform specific peptides released by enzymatic digestion of the hepatocyte incubations. The method uses synthetic stable isotope-labeled peptides as internal standards and allows both relative and absolute quantification to be performed from hepatic microsomal preparations. CYP protein determined by this LC-MS method correlated well with the mRNA and activity for induced levels of CYP1A2, CYP2B6 and CYP3A4. Interestingly, a small fold change was observed for the induction of 3A5 with phenobarbital. The results were reproducible with an average CV less then 10% for repeat analysis of the sample. This LC-MS method offers a robust assay for CYP protein quantitation for use in CYP induction assays.  相似文献   

3.
Human cytochrome P450 2A6 (CYP2A6) constitutes the major nicotine oxidase, and large interindividual differences are seen in the levels of this enzyme, to a great extent caused by the distribution of several different polymorphic gene variants mainly located in the open reading frame (ORF). In the present study, we report a common polymorphism located in the 5' flanking region of CYP2A6 affecting its expression. DHPLC analysis and complete sequence of the open reading frame of the gene from a Turkish individual revealed a -48T > G substitution disrupting the TATA box. Using dynamic allele-specific hybridization (DASH), genotyping of this novel variant (named CYP2A6*9) was carried out in 116 Swedish, 132 Turkish, and 102 Chinese subjects, and the allele frequencies were found to be 5.2, 7.2, and 15.7%, respectively. The significance of the polymorphism was investigated by the construction of luciferase reporter plasmids containing 135 or 500 bp of the 5'-upstream region of the gene transfected into human hepatoma B16A2 cells. The constructs carrying the -48T > G mutation were only expressed at about 50% of the wild-type alleles. It is concluded that the CYP2A6*9 allele might be one of the most common CYP2A6 variants in Caucasians that alters the levels of enzyme expression.  相似文献   

4.
Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.  相似文献   

5.
6.
7.
The identity and expression of hepatic P450 enzymes in marmosets was investigated using a panel of anti-peptide antibodies originally targeted against human P450 enzymes. In immunoblotting, of 12 antibodies examined, 10 bound specifically to bands in marmoset liver microsomal fraction corresponding to P450 enzymes. It is proposed that these represent marmoset CYP1A1, CYP1A2, CYP2A, CYP2B, CYP2C forms (CYP2C-1 and CYP2C-2), CYP2D19, CYP3A21 and another CYP3A form (CYP3A-m). The antibodies, together with an anti-marmoset CYP2E1 antibody, were used to investigate the expression of 10 P450 enzymes in marmosets treated with P450-inducing chemicals. Treatment with phenobarbitone caused CYP2B, CYP2C-2 and CYP3A21 levels to increase, rifampicin caused increases in CYP2B and CYP2C-1 and a decrease in CYP3A21 levels, whereas dioxin caused CYP1A1 and CYP1A2 levels to increase and CYP2E1 levels to decrease. Clofibric acid did not induce any P450. P450 enzyme activities were assessed using 8 different substrates and increases were found after treatment with phenobarbitone, rifampicin, and dioxin. However, due to species differences in substrate selectivity, it proved difficult to ascribe these changes to individual P450 enzymes. Thus, the use of anti-peptide antibodies provides a more informative way of assessing the levels of specific P450 enzymes than enzyme activity measurements.  相似文献   

8.
Wang D  Jiang Z  Shen Z  Wang H  Wang B  Shou W  Zheng H  Chu X  Shi J  Huang W 《PloS one》2011,6(10):e24900
Variations in the activities of Cytochrome P450s are one of the major factors responsible for inter-individual differences in drug clearance rates, which may cause serious toxicity or inefficacy of therapeutic drugs. Various mRNA level is one of the key factors for different activity of the major P450 genes. Although both genetic and environmental regulators of P450 gene expression have been widely investigated, few studies have evaluated the functional importance of cis- and trans-regulatory factors and environmental factors in the modulation of inter-individual expression variations of the P450 genes. In this study, we measured the mRNA levels of seven major P450 genes (CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5) in 96 liver biopsy samples from Chinese population. Both trans-acting (mRNA levels and non-synonymous SNPs of putative regulator genes) and cis-acting (gene copy number and functional SNPs) factors were investigated to identify the determinants of the expression variations of these seven P450 genes. We found that expression variations of most P450 genes, regulator genes and housekeeping genes were positively correlated at the mRNA level. After partial correlation analysis using ACTB and GAPDH expression to eliminate the effect of global regulators, a UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree was constructed to reveal the effects of specific regulation networks potentially masked by global regulators. Combined with the functional analysis of regulators, our results suggested that expression variation at the mRNA level was mediated by several factors in a gene-specific manner. Cis-acting genetic variants might play key roles in the expression variation of CYP2D6 and CYP3A5, environmental inducers might play key roles in CYP1A1 and CYP1A2 variation and global regulators might play key roles in CYP2C9 variation. In addition, the functions of regulators that play less important roles in controlling expression variation for each P450 gene were determined.  相似文献   

9.

Background

Tacrolimus is the first-line immunosuppressant after organ transplantation. It is mainly metabolized by cytochrome P450, family 3, subfamily A (CYP3A) enzymes, but there are large individual differences in metabolism. Interleukin 6 (IL6) has been shown to cause a pan-suppression of mRNA levels of ten major CYP enzymes in human hepatocyte cultures. IL6 has been shown to provide hepatoprotection in various models of liver injury. Rs1800796 is a locus in the IL6 gene promoter region which regulates cytokine production. We speculated that IL6 rs1800796 polymorphisms may lead to individual differences in tacrolimus metabolism by affecting CYP3A enzymes levels and liver function after liver transplantation.

Methodology/Principal Findings

Ninety-six liver transplant patients receiving tacrolimus were enrolled in the study. Two single nucleotide polymorphisms (SNP), CYP3A5 rs776746 and IL6 rs1800796, were genotyped in both donors and recipients. The effects of SNPs on tacrolimus concentration/dose (C/D ratio) at four weeks after transplantation were studied, as well as the effects of donor IL6 rs1800796 polymorphisms on liver function. Both donor and recipient CYP3A5 rs776746 allele A showed association with lower C/D ratios, while donor IL6 rs1800796 allele G showed an association with higher C/D ratios. Donor CYP3A5 rs776746 allele A, IL6 rs1800796 allele C, and recipient CYP3A5 rs776746 allele A were associated with fast tacrolimus metabolism. With increasing numbers of these alleles, patients were found to have increasingly lower tacrolimus C/D ratios at time points after transplantation. Donor IL6 rs1800796 allele G carriers showed an association with higher glutamic-pyruvic transaminase (GPT) levels.

Conclusions

Combined analysis of donor CYP3A5 rs776746, IL6 rs1800796, and recipient CYP3A5 rs776746 polymorphisms may distinguish tacrolimus metabolism better than CYP3A5 rs776746 alone. IL6 may lead to individual differences in tacrolimus metabolism mainly by affecting liver function.  相似文献   

10.
11.
The Cytochrome P450 2B6 (CYP2B6) enzyme makes a small contribution to hepatic nicotine metabolism relative to CYP2A6, but CYP2B6 is the primary enzyme responsible for metabolism of the smoking cessation drug bupropion. Using CYP2A6 genotype as a covariate, we find that a non-coding polymorphism in CYP2B6 previously associated with smoking cessation (rs8109525) is also significantly associated with nicotine metabolism. The association is independent of the well-studied non-synonymous variants rs3211371, rs3745274, and rs2279343 (CYP2B6*5 and *6). Expression studies demonstrate that rs8109525 is also associated with differences in CYP2B6 mRNA expression in liver biopsy samples. Splicing assays demonstrate that specific splice forms of CYP2B6 are associated with haplotypes defined by variants including rs3745274 and rs8109525. These results indicate differences in mRNA expression and splicing as potential molecular mechanisms by which non-coding variation in CYP2B6 may affect enzymatic activity leading to differences in metabolism and smoking cessation.  相似文献   

12.
Wen S  Wang H  Ding Y  Liang H  Wang S 《Genetic testing》2004,8(4):411-416
Human cytochrome P450 3A4 (CYP34A) plays an important role in the metabolism of many endo- and xenomaterials. It also exhibits a substantial interindividual variation in enzymatic activity. It has been shown that the mutant alleles of CYP3A4 encoding inactive/decreased enzymes are largely caused by single nucleotide polymorphisms (SNPs) in the gene sequence. In the present study, with the goal of detecting the known SNPs of CYP3A4, an oligonucleotide microarray was created. A genotyping standard for this microarray was also established using constructed plasmids as standard templates. The 12 SNPs of CYP3A4 in 387 Chinese DNA samples were screened using this oligonucleotide microarray. Three heterozygous subjects of CYP3A4*/*4, 5 heterozygous subjects of CYP3A4*1/*5, 4 heterozygous subjects of CPY3A4*1/6, and 6 heterozygous subjects of CYP3A4*1/*18 were found. The genotyping results of the 18 heterozygous subjects and 12 wild-type subjects were validated by direct sequencing.  相似文献   

13.

Background

Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.

Methodology

CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68) of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7), samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.

Principal Findings

Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.

Conclusions

This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.  相似文献   

14.
Expression of drug-metabolizing enzymes including cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) in various tissues of Suncus murinus (Suncus) were examined. Northern blot analysis showed that mRNAs hybridizable with cDNAs for rat CYP1A2, human CYP2A6, rat CYP2B1, human CYP2C8, human CYP2D6, rat CYP2E1, human CYP3A4 and rat CYP4A1 were expressed in various tissues from Suncus. The mRNA level of CYP2A in the Suncus lung was very high. Furthermore, it was found that the level of CYP2A mRNA in the Suncus lung was higher compared to the Suncus liver. The expression level of mRNA hybridizable with cDNA for human CYP3A4 was very low. The presence of CYP3A gene in Suncus was proven by the induction of the CYP with dexamethasone. Very low expression levels of mRNAs hybridizable with cDNAs for rat FMO1, rat FMO2, rat FMO3 and rat FMO5 were also seen in Suncus liver. No apparent hybridization band appeared when human FMO4 cDNA was used as a probe. The hepatic expression of mRNAs hybridizable with cDNAs for UDP-glucuronosyltransferase 1*6, aryl sulfotransferase, glutathione S-transferase 1, carboxyesterase and microsomal epoxide hydrolase in the Suncus were observed. These results indicate that the Suncus is a unique animal species in that mRNAs for CYP3A and FMO are expressed at very low levels.  相似文献   

15.

Background

The cytochrome P450 CYP1A1 and CYP1B1 enzymes are involved in carcinogenesis via activation of pro-carcinogenic compounds to carcinogenic metabolites. CYP1A1 and CYP1B1 have shown elevated levels in human tumors as determined by qRT-PCR and immunohistochemical studies. However studies that have examined CYP1 expression by enzyme activity assays are limited.

Results

In the current study the expression of CYP1A1 and CYP1B1 was investigated in a panel of human tumors of bladder and colorectal origin by qRT-PCR and enzyme activity assays. The results demonstrated that 35% (7/20) of bladder tumors and 35% (7/20) of colon tumors overexpressed active CYP1 enzymes. CYP1B1 mRNA was overexpressed in 65% and 60% of bladder and colon tumors respectively, whereas CYP1A1 was overexpressed in 65% and 80% of bladder and colon tumors. Mean mRNA levels of CYP1B1 and CYP1A1 along with mean CYP1 activity were higher in bladder and colon tumors compared to normal tissues (p<0.05). Statistical analysis revealed CYP1 expression levels to be independent of TNM status. Moreover, incubation of tumor microsomal protein in 4 bladder and 3 colon samples with a CYP1B1 specific antibody revealed a large reduction (72.5 ± 5.5 % for bladder and 71.8 ± 7.2% for colon) in catalytic activity, indicating that the activity was mainly attributed to CYP1B1 expression.

Conclusions

The study reveals active CYP1 overexpression in human tumors and uncovers the potential use of CYP1 enzymes and mainly CYP1B1 as targets for cancer therapy.  相似文献   

16.
17.
The cytochrome p450 (CYP) superfamily comprises enzymes that play an essential role in the transformation of medically relevant compounds. Accurate genotyping of polymorphisms in members of this family is drawing increasing interest because certain allelic variants may result in either loss of efficacy or toxic accumulation of therapeutic agents. Debrisoquine 4-hydroxylase, or CYP2D6, is among the most widely studied of the CYPs. The complexity of the CYP2D6 genomic region, including pseudogenes, gene deletions, and gene duplications, has offered numerous challenges to developing a genotyping strategy. We describe a comprehensive CYP2D6 genotyping strategy that employs both a PCR/Invader genotyping assay system and an Invader genomic copy number assay The Invader system is a homogeneous, isothermal, highly specific, and robust signal amplification system. Resultsfrom II CYP2D6 assays in an alle frequency study compare well to published allele frequency values for Caucasians. Further, Invader assays provided unambiguous genotyping determinations for 100% of the 171 samples that yielded a visible PCR product on an agarose gel. A copy number assay yielded only one equivocal result in 205 samples. We identified 17 single-copy individuals and 17 three-copy (or more) individuals.  相似文献   

18.
19.
Betel quid chewing is known to cause cheek cancer in a wide area covering Africa to Asia. Areca nut contained in the betel quid is believed to give rise to carcinogenic N-nitrosamines. In the present study, the roles of human cytochromes P450 (P450 or CYP) in the mutagenic activation of betel quid-specific N-nitrosamines such as 3-(N-nitrosomethylamino)propionitrile (NMPN), 3-(N-nitrosomethylamino)propionaldehyde (NMPA) and N-nitrosoguvacoline (NG) were examined by using genetically engineered Salmonella typhimurium YG7108 expressing each form of human P450 together with NADPH-P450 reductase, which had been established in our laboratory. Among typical P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2D6 or CYP3A4) examined, CYP2A6 was the most efficient activator of NMPN, followed by CYP1A1 and CYP1B1. The mutagenic activation of NMPN by CYP2A6 was seen at the substrate concentrations of microM levels (approximately 100 microM). The activation of NMPA was catalyzed predominantly by CYP2A13 and to lesser extents by CYP2A6, CYP1A1, CYP1A2 and CYP1B1. The activation of NMPA by CYP2A13 was detectable at the substrate concentrations of microM levels (approximately 1 microM). NG was activated by CYP2A13 and CYP2A6, the genotoxicity of NG being much lower than that of NMPA or NMPN. Based on these data, we conclude that human CYP2A subfamily members play important roles in the mutagenic activation of essentially all betel quid-related N-nitrosamines tested in the present study.  相似文献   

20.
For many drugs, pharmacogenetic polymorphisms are known affecting biotransformation and clinical outcome. The clinical importance of these variants depends on allele-frequency and the effect size of the clinical outcome parameters. Further, it depends on the therapeutic range of the drug which is affected, on predictability of drug response as well as on duration until onset of therapeutic efficacy. Consequences which arise from genotyping might be: adjustment of dose according to genotype, choice of therapeutic strategy or even choice of drug. In antidepressant drug treatment, most drugs are metabolized via the polymorphic cytochrome P450 enzyme CYP2D6. Huge differences in pharmacokinetic parameters have been consistently shown for many tricyclics, some SSRIs, and other antidepressant drugs whereas the effects on therapeutic efficacy and adverse events have been described controversially. In cardiovascular disease, oral anticoagulants, nonsteroidal anti-inflammatory drugs, oral hypoglycemic drugs and other drugs are affected by genetic polymorphisms of the cytochrome P450 drug metabolizing enzyme CYP2C9. Studies in patients or healthy volunteers revealed up to 10-fold differences in pharmacokinetic parameters due to genetic polymorphisms of CYP2C9. Pharmacogenetics based dose adjustments are one tool to individualize drug treatment according to genetic factors. They can be derived from pharmacokinetic data with the aim to obtain equal drug concentrations in each individual. Prospective validation of dose adjustments based on pharmacogenetics should be performed before routine application of such strategies. A controlled prospective clinical trial with one arm receiving genotype-based dose adjustments and the other arm receiving therapy as usual will elucidate the benefit of pharmacogenomics-based individualization of certain drug therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号