首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Gel filtration of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonother ( C12E8 ) has been performed under conditions where active (alpha beta)2 dimers (Mr 265000) are obtained, and under conditions where dissociation into alpha beta monomers occurs without appreciable loss of activity. It is shown that the alpha beta monomers aggregate with time to form (alpha beta)2 dimers at low detergent concentrations with no change in enzymatic activity. At high detergent concentrations the aggregation is much slower, but the enzymatic activity is lost rapidly. Polyacrylamide gel electrophoresis in the presence of C12E8 also suggest that high concentrations of detergent dissociate the (alpha beta)2 dimer into smaller particles, and conditions for gel electrophoresis are described. The inactivating effect of C12E8 at high C12E8 /protein ratios can be related to a delipidation of the enzyme, with about 0.19 mg phospholipid required per mg protein for optimal activity. The experiments suggest that the solubilized (Na+ + K+)-ATPase can be disrupted into particles containing only one alpha-chain and one or two beta-chains without irreversible loss of activity, and that the stable form of the enzyme is an (alpha beta)2 dimer.  相似文献   

2.
Cu+ distribution in metallothionein fragments   总被引:1,自引:0,他引:1  
The differential distribution of Cu+ between separate alpha and beta domains of metallothionein (the isolated peptide fragments) and the rate of transfer of Cu+ between the two domains using copper-thiolate specific emission spectroscopy are reported. Kinetic data show the rate of transfer of Cu+ from the Cu6alpha to the Cd3beta domain is 2 x 10(-1) s(-1) while the transfer from Cu6beta to the Cd4alpha domain is much slower at 8 x 10(-3) s(-1), indicating the greater binding affinity of Cu+ for the MT beta domain. We report that the emission intensity of Cu6beta is 0.45 the emission intensity of Cu6alpha-MT. Lambda(max) is shown to be a probe of the environment of the Cu+. A series of copper-containing domain intermediates to the formation of the filled Cu6S9-beta and Cu6S11-alpha-clusters are identified. A mechanism is proposed for the formation of Cu12(betaalpha)-MT that involves metal exchange reactions of Cu+ ions from the alpha to the beta domain with initial formation of a Cu4beta-cluster.  相似文献   

3.
1. (Na+ + K+)-ATPase from rectal glands of Squalus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the alpha subunit (Mr 106000) and two on the beta subunit (Mr 40000). The beta subunit also contains one disulphide bridge. 2. The reaction of (Na+ + K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each alpha subunit and one on each beta subunit. Reaction of these groups with N-ethylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each alpha subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5-10 mM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ + K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

4.
The dependence of the rate of dephosphorylation of ATP, ITP, GTP and CTP (= NTP), expressed as first-order rate constants (50 degrees C; I = 0.1 M, NaClO4), on pH (2 to 10), in the absence and presence of Mn2+, Ni2+, and Zn2+, was investigated. The reaction is accelerated by Zn2+ and passes through a pH optimum at about 8 for the system Zn2+-ATP or 9 for Zn2+-ITP and Zn2+-GTP; this is analogous to observations made earlier with the corresponding Cu2+ systems. By computing the pH dependence of the distribution of the several species present in these systems it is shown that the highest rates are observed in the pH regions where the concentration of Zn(ATP)2-, Zn(ITP-H)3-, or Zn(GTP-H)3- dominates. By evaluating the pH dependence evidence is given that the attacking nucleophile is OH- or H2O for Zn (ATP)2- and H2O for Zn (ITP-H)3- or Zn(GTP-H)3-. For all these complexes metal-ion/nucleic-base interactions are known, leading to the formation of macrochelates. These metal-ion/nucleic-base interactions are crucial for the observation of a metal-ion-promoted dephosphorylation; in agreement with this, and the small tendency of the cytosine moiety to coordinate, the CTP systems are rather stable towards dephosphorylation. It should be noted that these experimental results do not necessarily mean that the macrochelates usually described are the reactive complexes, but only that the active complex must be closely related to them (e.g. isomers, etc). Although for the Ni2+ systems with ATP, ITP, and GTP, and for the Mn2+-ATP system a metal-ion/nucleic-base interaction is also known, these systems are not very sensitive to hydrolytic cleavage of the terminal P-O-P bond. The only known significant structural difference between the Ni2+-NTP or the Mn2+-ATP complexes and those of Cu2+ or Zn2+ is that Ni2+ Mn2+ coordinate to all three phsophate groups, whereas Cu2+ and Zn2+ involve only the beta and gamma ones. This structure-reactivity relationship is rationalized by the suggestion that in the active species the metal ion should be coordinated to the alpha,beta-phosphate groups leaving the gamma-group open to nucleophilic attack. Obviously, an initial beta,gamma-coordination is suitable for a shift of the metal ion along the phosphate back-bone into the reactive alpha-beta-position, while for an alpha,beta,gamma-coordination only the less favorable removal of the coordinated gamma-group remains. The metal-ion/nucleic-base interaction is considered as being important for achieving this reactive structure. The connection between trans-phosphorylation in vitro and in vivo is discussed. It is also shown that the formation of mixed-ligand or ternary complexes inhibits the dephosphorylation process. This is on the one hand of interest with regard to the transport of hydrolysis-sensitive phosphates in nature, while on the other it casts doubts on conclusions based on experiments carried out in the presence of buffers, because these contain weak bases and hence potential ligands.  相似文献   

5.
Kato K  Lukas A  Chapman DC  Dhalla NS 《Life sciences》2000,67(10):1175-1183
Previous studies have shown that cardiac Na+ -K+ ATPase activity in the UM-X7.1 hamster strain is decreased at an early stage of genetic cardiomyopathy and remains depressed; however, the mechanism for this decrease is unknown. The objective of the present study was to assess whether changes in the expression of cardiac Na+-K+ ATPase subunits in control and UM-X7.1 cardiomyopathic hamsters are associated with alterations in the enzyme activity. Accordingly, we examined sarcolemmal Na+-K+ ATPase activity as well as protein content and mRNA levels for the alpha1, alpha2, alpha3 and beta1-subunit of the Na+-K+ ATPase in 250-day-old UM-X7.1 and age-matched, control Syrian hamsters; this age corresponds to the severe stage of heart failure in the UM-X7.1 hamster. Na+-K+ ATPase activity in UM-X7.1 hearts was decreased compared to controls (9.0 +/- 0.8 versus 5.6 +/- 0.8 micromol Pi/mg protein/hr). Western blot analysis revealed that the protein content of Na+-K+ ATPase alpha1- and beta1-subunits were increased to 164 +/- 27% and 146 +/- 22% in UM-X7.1 hearts respectively, whereas that of the alpha2- and alpha3-subunits were decreased to 82 +/- 5% and 69 +/- 11% of control values. The results of Northern blot analysis for mRNA levels were consistent with the protein levels; mRNA levels for the alpha1- and beta1-subunits in UM-X7.1 hearts were elevated to 165 +/- 14% and 151 +/- 10%, but the alpha2-subunit was decreased to 60 +/- 8% of the control value. We were unable to detect mRNA for the alpha3-subunit in either UM-X7. 1 or control hearts. These data suggest that the marked depression of Na+-K+ ATPase activity in UM-X7.1 cardiomyopathic hearts may be due to changes in the expression of subunits for this enzyme.  相似文献   

6.
In previous studies we had demonstrated that in the presence of 0.25 mM Cu2+ and 1.25 mM o-phenanthroline, cross-linking of the alpha-subunits of Na+ + K+)-dependent adenosine triphosphatase was induced by the addition of Na+ + ATP, and that the formation of the alpha,alpha-dimer was preceded by that of phosphoenzyme. The purpose of the present studies was the further evaluation of the role of phosphoenzyme in the process of cross-linking. Na+ + UTP did not induce cross-linking unless Mg2+ was also added. In contrast, Na+ + ATP-induced cross-linking did not require the addition of Mg2+. The different effects of ATP and UTP in the absence of added Mg2+ could be accounted for by the presence in the enzyme preparation of bound Mg2+ which supported enzyme phosphorylation by ATP but not by UTP. When the enzyme was phosphorylated by Pi, in the presence of Mg2 and ouabain, and the exposed to Cu2+ and o-phenanthroline, the alpha,alpha-dimer was obtained. Under these conditions, Na+ blocked both phosphorylation and cross-linking. These results indicate that it is the formation of phosphoenzyme per se that leads to conformational transitions favorable to cross-linking. They also suggest that Cu2+ and o-phenanthroline participate in the cross-linking reaction, but not in the phosphorylation reactions. In the digitonin-treated enzyme, Na+ and ATP induced the formation of phosphoenzyme, but not that of alpha,alpha-dimer. These findings indicate that in addition to phosphorylation, a proper orientation o alpha-subunits in an oligomer is also necessary for cross-linking.  相似文献   

7.
8.
The aim of this study was to determine whether changes in protein content and/or gene expression of Na+-K+-ATPase subunits underlie its decreased enzyme activity during ischemia and reperfusion. We measured protein and mRNA subunit levels in isolated rat hearts subjected to 30 min of ischemia and 30 min of reperfusion (I/R). The effect of ischemic preconditioning (IP), induced by three cycles of ischemia and reperfusion (10 min each), was also assessed on the molecular changes in Na+-K+-ATPase subunit composition due to I/R. I/R reduced the protein levels of the alpha2-, alpha3-, beta1-, and beta2-isoforms by 71%, 85%, 27%, and 65%, respectively, whereas the alpha1-isoform was decreased by <15%. A similar reduction in mRNA levels also occurred for the isoforms of Na+-K+-ATPase. IP attenuated the reduction in protein levels of Na+-K+-ATPase alpha2-, alpha3-, and beta2-isoforms induced by I/R, without affecting the alpha1- and beta1-isoforms. Furthermore, IP prevented the reduction in mRNA levels of Na+-K+-ATPase alpha2-, alpha3-, and beta1-isoforms following I/R. Similar alterations in protein contents and mRNA levels for the Na+/Ca2+ exchanger were seen due to I/R as well as IP. These findings indicate that remodeling of Na+-K+-ATPase may occur because of I/R injury, and this may partly explain the reduction in enzyme activity in ischemic heart disease. Furthermore, IP may produce beneficial effects by attenuating the remodeling of Na+-K+-ATPase and changes in Na+/Ca2+ exchanger in hearts after I/R.  相似文献   

9.
The chromium(III) complex of ATP, an MgATP complex analogue, inactivates (Na+ + K+)-ATPase by forming a stable chromo-phosphointermediate. The rate constant k2 of inactivation at 37 degrees C of the beta, gamma-bidentate of CrATP is enhanced by Na+ (K0.5 = 1.08 mM), imidazole (K0.5 = 15 mM) and Mg2+ (K0.5 = 0.7 mM). These cations did not affect the dissociation constant of the enzyme-chromium-ATP complex. The inactive chromophosphoenzyme is reactivated slowly by high concentrations of Na+ at 37 degrees C. The half-maximal effect on the reactivation was reached at 40 mM NaCl, when the maximally observable reactivation was studied. However, 126 mM NaCl was necessary to see the half-maximal effect on the apparent reactivation velocity constant. K+ ions hindered the reactivation with a Ki of 70 microM. Formation of the chromophosphoenzyme led to a reduction of the Rb+ binding sites and of the capacity to occlude Rb+. The beta, gamma-bidentate of chromium(III)ATP (Kd = 8 microM) had a higher than the alpha, beta, gamma-tridentate of chromium(III)ATP (Kd = 44 microM) or the cobalt tetramine complex of ATP (Kd = 500 microM). The beta, gamma-bidentate of the chromium(III) complex of adenosine 5'-[beta, gamma-methylene]triphosphate also inactivated (Na+ + K+)ATPase. Although CrATP could not support Na+, K+ exchange in everted vesicles prepared from human red blood cells, it supported the Na+-Na+ and Rb+-Rb+ exchange. It is concluded that CrATP opens up Na+ and K+ channels by forming a relatively stable modified enzyme-CrATP complex. This stable complex is also formed in the presence of the chromium complex of adenosine 5'-[beta, gamma-methylene]triphosphate. Because the beta, gamma-bidentate of chromium ATP is recognized better than the alpha, beta, gamma-tridentate, it is concluded that the triphosphate site recognizes MgATP with a straight polyphosphate chain and that the Mg2+ resides between the beta- and the gamma-phosphorus. The enhancement of inactivation by Mg2+ and Na+ may be caused by conformational changes at the triphosphate site.  相似文献   

10.
Zimmermann JL  Amano T  Sigalat C 《Biochemistry》1999,38(46):15343-15351
The properties of the nucleotide binding sites in the isolated beta and alpha subunits of H(+)-ATPase from Bacillus PS3 (TF1) have been examined by studying the EPR properties of bound VO(2+), which is a paramagnetic probe for the native Mg2+ cation cofactor. The amino acid ligands of the VO2+ complexes with the isolated beta subunit, with the isolated alpha subunit, with different mixtures of both alpha and beta subunits, and with the catalytic alpha 3 beta 3 gamma subcomplex have been characterized by a combination of EPR, ESEEM, and HYSCORE spectroscopies. The EPR spectrum of the isolated beta subunit with bound VO2+ (1 VO2+/beta) is characterized by (51)V hyperfine coupling parameters (A( parallel) = 168 x 10(-)(4) cm(-)(1) and A( perpendicular) = 60 x 10(-)(4) cm(-)(1)) that suggest that VO2+ binds to the isolated beta subunit with at least one nitrogen ligand. Results obtained for the analogous VO2+ complex with the isolated alpha subunit are virtually identical. ESEEM and HYSCORE spectra are also reported and are similar for both complexes, indicating a very similar coordination scheme for VO2+ bound to isolated alpha and beta subunits. In the isolated beta (or alpha) subunit, the bound VO2+ cation is coordinated by one nitrogen ligand with hyperfine coupling parameters A( parallel)((14)N) = 4.44 MHz, and A( perpendicular)((14)N) = 4.3 MHz and quadrupole coupling parameters e(2)()qQ approximately 3.18 MHz and eta approximately 1. These are typical for amine-type nitrogen ligands equatorial to the VO2+ cation; amino acid residues in the TF1 beta and alpha subunits with nitrogen donors that may bind VO2+ are reviewed. VO2+ bound to a mixture of alpha and beta subunits in the presence of 200 mM Na2SO4 to promote the formation of the alpha 3 beta 3 hexamer has a second nitrogen ligand with magnetic properties similar to those of a histidine imidazole. This situation is analogous to that in the alpha 3 beta 3 gamma subcomplex and in the whole TF1 enzyme [Buy, C., Matsui, T., Andrianambinintsoa, S., Sigalat, C., Girault, G., and Zimmermann, J.-L. (1996) Biochemistry 35, 14281-14293]. These data are interpreted in terms of only partially structured nucleotide binding sites in the isolated beta and alpha subunits as compared to fully structured nucleotide binding sites in the alpha 3 beta 3 heterohexamer, the alpha 3 beta 3 gamma subcomplex, and the whole TF1 ATPase.  相似文献   

11.
1. 8-Azido-ATP is a substrate for Escherichia coli (Ca2+ + Mg2+)-ATPase (E. coli F1). 2. Illumination of E. coli F1 in the presence of 8-azido-ATP causes inhibition of ATPase activity. The presence of ATP during illumination prevents inhibition. 3. 8-Azido-ATP and 4-chloro-7-nitrobenzofurazan (NbfCl) bind predominantly to the alpha subunit of the enzyme, but also significantly to the beta subunit. 4. The alpha subunit of E. coli F1 seems to have some properties that in other F1-ATPases are associated with the beta subunit.  相似文献   

12.
The bindings of Mg2+ to the F1 portion of Escherichia coli H+-ATPase and its isolated alpha and beta subunits were studied with 8-anilinonaphthalene-1-sulfonate (ANS). The fluorescence of ANS increased upon addition of F1 or its alpha subunit or beta subunit, as reported previously (M. Hirano, K. Takeda, H. Kanazawa, and M. Futai (1984) Biochemistry 23, 1652-1656). The fluorescence of ANS bound to F1 or its beta subunit increased significantly with further addition of Mg2+, whereas that of the alpha subunit increased only slightly. Ca2+ and Mn2+ had similar effects on the fluorescence of ANS with F1 and its beta subunit. The Mg2+-induced fluorescence enhancement (delta F) was high at an alkaline pH and was lowered by addition of ethylenediaminetetraacetic acid. Dicyclohexylcarbodiimide and azide had no effect on the delta F. Binding analysis showed that the concentration dependence of Mg2+ on the fluorescence enhancement of the beta subunit is similar to that of F1. These results suggest that both the beta subunit and F1 have binding sites for Mg2+ and that the delta F observed with F1 may be due to the binding of Mg2+ to the beta subunit.  相似文献   

13.
Crystallization patterns of membrane-bound (Na+ +K+)-ATPase   总被引:6,自引:0,他引:6  
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ +K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric alpha beta-unit of the enzyme protein. In phosphate-induced crystals an (alpha beta) 2-unit occupies one unit cell suggesting the interactions between alpha beta-units can be of importance in the function of the Na+, K+ pump.  相似文献   

14.
Stability constants for the Mg2+ and Cd2+ complexes of ATP, ADP, ATP alpha S, ATP beta S, and ADP alpha S have been determined at 30 degrees C and mu = 0.1 M by 31P NMR. Besides being of the utmost importance for determining species distributions for enzymatic studies, these constants allow an estimation of the preference of Cd2+ for sulfur vs. oxygen coordination in phosphorothioate complexes. Stability constants for Mg2+ complexes decreases when sulfur replaces oxygen (log K: ADP, 4.11; ADP alpha S, 3.66; ATP, 4.70; ATP alpha S, 4.47; ATP beta S, 4.04) because of (a) a statistical factor resulting from the loss of one potential phosphate oxygen ligand and (b) either an alteration in the charge distribution between oxygen and sulfur or destabilization of the chelate ring structure by loss of an internal hydrogen bond between an oxygen of coordinated phosphate and metal-bound water. Cd2+ complexes with sulfur-substituted nucleotides are more stable than those without sulfur (log K: ADP, 3.58; ADP alpha S, 4.95; ATP, 4.36; ATP alpha S, 4.42; ATP beta S, 5.44) because of the preferential binding of Cd2+ to sulfur rather than oxygen, which we estimate to be approximately 60 in CdADP alpha S and CdATP beta S. The proportion of tridentate coordination is estimated to be 50-60% in MgATP and MgATP beta S, approximately 27% in MgATP alpha S, approximately 16% in CdATP or CdATP beta S, but approximately 75% in CdATP alpha S. By analysis of the data of Jaffe and Cohn [Jaffe, E. K., & Cohn, M. (1979) J. Biol. Chem. 254, 10839], we conclude that the preference for oxygen over sulfur coordination to ATP beta S is 31 000 for Mg2+, 3100-3900 for Ca2+, and 158-193 for Mn2+. Proton NMR demonstrates that bidentate Cd2+ complexes form intramolecular chelates with the N-7 of adenine while Mg2+ nucleotides and the tridenate CdATP alpha S do not. An analysis of the 31P NMR line widths shows that the rate constants for dissociation of MgADP and MgATP are both 7000 s-1 while the association rate constants are 7 X 10(7) and 4 X 10(8) M-1 s-1, respectively. The observed dependence of the line width on nucleotide concentration is best explained by a base-stacking model at nucleotide concentrations above 5 mM.  相似文献   

15.
One beta1 and two alpha (alpha1 and alpha3) isoforms of Na+/K+-ATPase exist in rat uteri. Previous immunocytochemistry studies have suggested that the alpha3 isoform may be involved in calcium regulation indirectly. Estrogens are known to both modulate Na+/K+-ATPase activities in non-uterine tissues and suppress spontaneous uterine contractions in rats. Thus the purpose of this study was to examine the correlation between estrogens-modulated uterine contraction and the expression of Na+/K+-ATPase alpha3 isoform in rats. After 1-, 2-, and 4- day treatments with 17beta-estradiol (E2, 5 microg/ml/kg, s.c., daily), the diameter of uterine horn was measured. The contraction force of uterine strips was measured by standard muscle bath apparatus. The protein abundance and enzyme activity of Na+/K+-ATPase in rat uteri were measured by Western blot analysis and ATPase assay, respectively. One day of E2 decreased both contraction frequency and alpha3-protein expression without the change in uterine diameter, enzyme activity or other isoforms. Two days of E2 reduced contraction frequency, the enzyme activity, as well as alpha3- and beta1- protein abundance but increased alpha1-protein and uterine diameter. Four days of E2 elicited similar effects as two days of E2, but did not affect alpha1-protein abundance. In conclusion, E2 elicits differential effects on isoform expression. After 1-day treatment with 17beta-estradiol, the decrease in the expression of alpha3 and beta1 without a change in Na+/K+-ATPase activity suggests that some isoform other than beta1 exist in rat uteri. The positive correlation between the reduction of alpha3-and the decrease of contraction frequency suggests the involvement of alpha3 isoform in uterine oscillation.  相似文献   

16.
The cellular distribution of Na+, K+-ATPase subunit isoforms was mapped in the secretory epithelium of the human prostate gland by immunostaining with antibodies to the alpha and beta subunit isoforms of the enzyme. Immunolabeling of the alpha1, beta1 and beta2 isoforms was observed in the apical and lateral plasma membrane domains of prostatic epithelial cells in contrast to human kidney where the alpha1 and beta1 isoforms of Na+, K+-ATPase were localized in the basolateral membrane of both proximal and distal convoluted tubules. Using immunohistochemistry and PCR we found no evidence of Na+, K+-ATPase alpha2 and alpha3 isoform expression suggesting that prostatic Na+, K+-ATPase consists of alpha1/beta1 and alpha1/beta2 isozymes. Our immunohistochemical findings are consistent with previously proposed models placing prostatic Na+, K+-ATPase in the apical plasma membrane domain. Abundant expression of Na+, K+-ATPase in epithelial cells lining tubulo-alveoli in the human prostate gland confirms previous conclusions drawn from biochemical, pharmacological and physiological data and provides further evidence for the critical role of this enzyme in prostatic cell physiology and ion homeostasis. Na+, K+-ATPase most likely maintains an inwardly directed Na+ gradient essential for nutrient uptake and active citrate secretion by prostatic epithelial cells. Na+, K+-ATPase may also regulate lumenal Na+ and K+, major counter-ions for citrate.  相似文献   

17.
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to the Km for G protein GTPase activity X G beta gamma increases the rate of dissociation of GTP gamma S from G alpha X GTP gamma S or G alpha X GTP gamma S X Mg2+ at low concentrations of Mg2+. When the concentration of Mg2+ exceeds 1 mM, G beta gamma dissociates from G beta gamma X G alpha X GTP gamma S X Mg2+. Compared with the dramatic effect of Mg2+ on binding of GTP gamma S to G alpha, the metal has relatively little effect on the binding of GDP. However, G beta gamma increases the affinity of G alpha for GDP by more than 100-fold. High concentrations of Mg2+ promote the dissociation of GDP from G beta gamma X G alpha X GDP, apparently without causing subunit dissociation. The steady-state rate of GTP hydrolysis is strictly correlated with the rate of dissociation of GDP from G alpha under all conditions examined. Thus, there are at least two sites for interaction of Mg2+ with G protein-nucleotide complexes. Furthermore, binding of G beta gamma and GTP gamma S to G alpha is negatively cooperative, while the binding interaction between G beta gamma and GDP is strongly positive.  相似文献   

18.
Ca2+ binding sites located on the Ca2+-dependent ATPase purified from the fragmented sarcoplasmic reticulum (Ikemoto, N (1974) J. Biol. Chem. 249, 649) have been further studied. At 0 degrees there are three classes of binding sites denoted as alpha (K congruent to 3 times 10(61 M-1), beta(K congruent to 5 times 10(4) M-1), and gamma (K congruent to 1 times 10(3) M-1) sites. At 22 degrees there is no beta site but there are about two alpha sites per 10(5) daltons, while at 0 degrees there is one alpha and one beta site. The change is reversible. The parallelism between the temperature-induced changes in the alpha site and the reported (Sumida, M., and Tonomura, Y. (1974) J. Biochem. 75, 283) temperature dependence of the ratio of Ca2+ transport and ATP cleavage (deltaCa2+/deltaATP is 2 at 22 degrees and 1 at 0 degrees) suggests the involvement of the alpha site in transport. Studies at a low ATP to enzyme ratio (0.5 to 2.5 mol of ATP/10(5) g of ATPase unit) permitting the separate investigation of the phosphorylation and dephosphorylation process show that concomitantly with the formation of the phosphorylated enzyme (E approximately P) bound calcium is released from, and concomitantly with the dephosphorylation it is rebound to, the alpha site. Binding of Ca2+ to the E approximately P moiety inhibits the liberation of Pi. Analysis by use of a Hill plot of the Ca2+ dependence of the inhibition suggests the involvement of two sites with an average affinity of approximately 10(3) M-1. These have tentatively been identified as alpha (low affinity form) and gamma sites.  相似文献   

19.
Functionally active preparations of Na+,K(+)-ATPase isozymes from calf brain that contain catalytic subunits of three types (alpha 1, alpha 2, and alpha 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of the membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K(+)-ATPase of the alpha 1 beta 1 type and minor amounts of isozymes of the alpha 2 beta 2 (beta 1) and the alpha 3 beta 1 (beta 2) type. The axolemma contains alpha 2 beta 1- and alpha 3 beta 1 isozymes. A carbohydrate analysis indicated that alpha 1 beta 1 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the beta 1 isoform. An enhanced sensitivity of the alpha 3 catalytic subunit of Na+,K(+)-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 decreases Y493 was localized (residue numbering is that of the human alpha 3 subunit). This sequence corresponds to one of the regions of the greatest variability in alpha 1, alpha 2, alpha 3, and alpha 4-subunits, but at the same time, it is characteristic of the alpha 3 isoforms of various species. The presence of the beta 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K(+)-ATPase alpha 3 beta 1 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the alpha 3 catalytic subunit was shown.  相似文献   

20.
Interactions between endothelial cells and extracellular matrix proteins are important determinants of endothelial cell signaling. Endothelial adhesion to fibronectin through alpha(v)beta(3) integrins or the engagement and aggregation of luminal alpha(v)beta(3) receptors by vitronectin triggers Ca2+ influx. However, the underlying signaling mechanisms are unknown. The electrophysiological basis of alpha(v)beta(3) integrin-mediated changes in endothelial cell Ca2+ signaling was studied using whole cell patch clamp and microfluorimetry. The resting membrane potential of bovine pulmonary artery endothelial cells averaged -60 +/- 3 mV. In the absence of intracellular Ca2+ buffering, the application of soluble vitronectin (200 microg/ml) resulted in activation of an outwardly rectifying K+ current at holding potentials from -50 to +50 mV. Neither a significant shift in reversal potential (in voltage clamp mode) nor a change in membrane potential (in current clamp mode) occurred in response to vitronectin. Vitronectin-activated current was significantly inhibited by pretreatment with the alpha(v)beta(3) integrin antibody LM609 by exchanging extracellular K+ with Cs+ or by the application of iberiotoxin, a selective inhibitor of large-conductance, Ca2+-activated K+ channels. With intracellular Ca2+ buffered by EGTA in the recording pipette, vitronectin-activated K+ current was abolished. Fura-2 microfluorimetry revealed that vitronectin induced a significant and sustained increase in intracellular Ca2+ concentration, although vitronectin-induced Ca2+ current could not be detected. This is the first report to show that an endothelial cell ion channel is regulated by integrin activation, and this K+ current likely plays a crucial role in maintaining membrane potential and a Ca2+ driving force during engagement and activation of endothelial cell alpha(v)beta(3) integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号