首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Angola’s intermittent 27‐year civil war displaced over four million people and decimated wildlife populations. During the 1980s, African elephants (Loxodonta africana Blumenbach) in Angola drew international alarm with reports of 100,000 elephants killed. Luiana Partial Reserve (PR), a conservation area in south‐east Angola, was the military operations centre for UNITA (National Union for the Total Independence of Angola), which used elephant ivory to pay for arms and meat. However, the full impact of the civil war on elephants is uncertain because there are no reliable estimates of Angolan elephant populations. Following the end of the civil war in 2002, our three aerial surveys of Luiana PR indicated that elephant numbers are increasing rapidly, from 366 in January 2004 to 1827 in November 2005, and expanding their range in the Reserve. Concurrently, elephants tagged with satellite collars in northern Botswana and the Caprivi Strip, Namibia, moved into Luiana PR. To facilitate re‐colonization and conservation of elephants and other wildlife in Luiana PR, we recommend: (i) realignment of the veterinary fence on the Botswana–Namibia border; (ii) development of effective land use management and anti‐poaching programmes; (iii) clearing of landmines; (iv) designation of the Reserve a national park; and (v) development of ecotourism and community conservation programmes.  相似文献   

2.
Locally isolated populations in marginal habitats may be genetically distinctive and of heightened conservation concern. Elephants inhabiting the Namib Desert have been reported to show distinctive behavioral and phenotypic adaptations in that severely arid environment. The genetic distinctiveness of Namibian desert elephants relative to other African savanna elephant (Loxodonta africana) populations has not been established. To investigate the genetic structure of elephants in Namibia, we determined the mitochondrial (mt) DNA control region sequences and genotyped 17 microsatellite loci in desert elephants (= 8) from the Hoanib River catchment and the Hoarusib River catchment. We compared these to the genotypes of elephants (= 77) from other localities in Namibia. The mtDNA haplotype sequences and frequencies among desert elephants were similar to those of elephants in Etosha National Park, the Huab River catchment, the Ugab River catchment, and central Kunene, although the geographically distant Caprivi Strip had different mtDNA haplotypes. Likewise, analysis of the microsatellite genotypes of desert‐dwelling elephants revealed that they were not genetically distinctive from Etosha elephants, and there was no evidence for isolation by distance across the Etosha region. These results, and a review of the historical record, suggest that a high learning capacity and long‐distance migrations allowed Namibian elephants to regularly shift their ranges to survive in the face of high variability in climate and in hunting pressure.  相似文献   

3.
We investigated the ranging patterns of elephants in the Marsabit protected area, north eastern Kenya, to ascertain the range of bachelor and female family herds in different seasons, and to identify corridor and noncorridor areas. Data were acquired for five bachelor and four female family herds equipped with satellite‐linked geographical positioning system collars, and monitored from December 2005 to December 2007. Distinct dry (about 260 km2) and wet seasons (about 910 km2) ranges were observed, with connecting corridors (north‐eastern corridor: about 90 km long, about 2‐7 km wide; southern corridors: about 10‐20 km long, about 2‐3 km wide). The dry season range corresponded with Marsabit evergreen forest, while the wet season range matched with dry deciduous lowland shrubs. The ranging elephants moved at speed of about 0.2‐20 kmh?1. Bachelor herds moved faster than female family herds. Elephants moved fast during the intermediate and wet seasons than during the dry season. The speed of ranging elephants was over 1 kmh?1 in the corridor areas and about 0.2 to less than 1 kmh?1 in the non‐corridor areas. Expansion of settlements towards corridor areas needs to be controlled to avoid future blocking of connectivity between wet and dry season elephant ranges.  相似文献   

4.

Background

Home range is defined as the extent and location of the area covered annually by a wild animal in its natural habitat. Studies of African and Indian elephants in landscapes of largely open habitats have indicated that the sizes of the home range are determined not only by the food supplies and seasonal changes, but also by numerous other factors including availability of water sources, habitat loss and the existence of man-made barriers. The home range size for the Bornean elephant had never been investigated before.

Methodology/Principal Findings

The first satellite tracking program to investigate the movement of wild Bornean elephants in Sabah was initiated in 2005. Five adult female elephants were immobilized and neck collars were fitted with tracking devices. The sizes of their home range and movement patterns were determined using location data gathered from a satellite tracking system and analyzed by using the Minimum Convex Polygon and Harmonic Mean methods. Home range size was estimated to be 250 to 400 km2 in a non-fragmented forest and 600 km2 in a fragmented forest. The ranging behavior was influenced by the size of the natural forest habitat and the availability of permanent water sources. The movement pattern was influenced by human disturbance and the need to move from one feeding site to another.

Conclusions/Significance

Home range and movement rate were influenced by the degree of habitat fragmentation. Once habitat was cleared or converted, the availability of food plants and water sources were reduced, forcing the elephants to travel to adjacent forest areas. Therefore movement rate in fragmented forest was higher than in the non-fragmented forest. Finally, in fragmented habitat human and elephant conflict occurrences were likely to be higher, due to increased movement bringing elephants into contact more often with humans.  相似文献   

5.
The factors that trigger sudden, seasonal movements of elephants are uncertain. We hypothesized that savannah elephant movements at the end of the dry season may be a response to their detection of distant thunderstorms. Nine elephants carrying Global Positioning System (GPS) receivers were tracked over seven years in the extremely dry and rugged region of northwestern Namibia. The transition date from dry to wet season conditions was determined annually from surface- and satellite-derived rainfall. The distance, location, and timing of rain events relative to the elephants were determined using the Tropical Rainfall Measurement Mission (TRMM) satellite precipitation observations. Behavioral Change Point Analysis (BCPA) was applied to four of these seven years demonstrating a response in movement of these elephants to intra- and inter-seasonal occurrences of rainfall. Statistically significant changes in movement were found prior to or near the time of onset of the wet season and before the occurrence of wet episodes within the dry season, although the characteristics of the movement changes are not consistent between elephants and years. Elephants in overlapping ranges, but following separate tracks, exhibited statistically valid non-random near-simultaneous changes in movements when rainfall was occurring more than 100 km from their location. While the environmental trigger that causes these excursions remains uncertain, rain-system generated infrasound, which can travel such distances and be detected by elephants, is a possible trigger for such changes in movement.  相似文献   

6.
Balancing trade-offs between foraging and risk factors is a fundamental behavior that structures the spatial distribution of species. For African elephants Loxodonta africana, human pressures from poaching and conflict are primary drivers of species decline, but little is known about how elephants structure their spatial behavior in the face of human occupancy and predation. We seek to understand how elephants balance trade-offs between resource access, human presence and human predatory risk factors (poaching and conflict killing) in an unfenced, dynamic ecosystem where elephants persist primarily outside protected areas in community rangelands. We used tracking data from 101 elephants collected between 2001 and 2016. We investigated elephant behavior in response to landcover, topography, productivity, water, human features and human predation risk using third-order resource selection functions. We extended this analysis by employing a mixed-effects multinomial regression to identify temporal shifts in habitat use, and evaluated temporal shifts in movement patterns by estimating mean squared displacement across different productivity periods. Across periods, elephants displayed strong selection for productive areas and areas near water. Temporal shifts in habitat use showed that, during the dry period, elephants were clustered around permanent water sources where humans also congregated. At the onset of the wet period, a shift occurred where elephants moved away from permanent water and from permanent settlements towards seasonal water sources and seasonal settlements. Our findings indicate that foraging and water access are important limiting factors affecting elephants that potentially restrain their spatial responses to humans at the scale of our analysis. Given that pastoralists and elephants rely on the same resources, increasing human and livestock populations enhance pressure on shared resources and space in Africa's drylands. The long-term conservation of elephants will require approaches that reduce poaching as well as landscape level planning to prevent negative impacts from increasing competition for preferred resources.  相似文献   

7.
With extinction rates far exceeding the natural background rate, reliable monitoring of wildlife populations has become crucial for adaptive management and conservation. Robust monitoring is often labor intensive with high economic costs, particularly in the case of those species that are subject to illegal poaching, such as elephants, which require frequent and accurate population estimates over large spatial scales. Dung counting methods are commonly employed to estimate the density of elephants; however, in the absence of a full survey calibration, these can be unreliable in heterogeneous habitats where dung decay rates may be highly variable. We explored whether motion-sensitive cameras offer a simple, lower cost, and reliable alternative for monitoring in challenging forest environments. We estimated the density of African savanna elephants (Loxodanta africana) in a montane forest using the random encounter model and assessed the importance of surveying parameters for future survey design. We deployed motion-sensitive cameras in 65 locations in the Aberdare Conservation Area in Kenya during June to August in 2015 to 2017, for a survey effort of 967 days, and a mean encounter rate of 0.09 ± 0.29 (SD) images/day. Elephants were captured in 16 locations. Density estimates varied between vegetation types, with estimates ranging from 6.27/km2 in shrub, 1.1/km2 in forest, 0.53/km2 in bamboo (Yushania alpine), and 0.44/km2 in the moorlands. The average speed of animal movement and the camera detection zone had the strongest linear associations with density estimates (R = −0.97). The random encounter model has the potential to offer an alternative, or complementary method within the active management framework for monitoring elephant populations in forests at a relatively low cost.  相似文献   

8.
Recent molecular phylogenies of the African elephants suggest that there is an evolutionary structure within Loxodonta africana. Some nuclear results ( Roca et al., 2001 ) support the separation of the forest African elephant subspecies L. a. cyclotis as a species distinct from the savannah elephant L. a. africana, on the basis of the recognition of both forming highly divergent (reciprocally monophyletic) clades. Conversely, a mitochondrial survey ( Eggert et al., 2002 ), while admitting a geographic partitioning of the genetic structure within African elephants, suggests retaining the status quo. They recognize three diagnosible entities (western, central and south‐eastern Africa) with non‐overlapping ranges within L. africana sensu lato. In order to address these conflicting views (historical fragmentation and speciation or isolation by distance, respectively), we have sequenced two datasets of 1961 bp (for 50 elephants) and about 3700 bp, respectively (for 20 elephants) of the mitochondrial DNA for both forms of elephants (cyclotis and africana). They span the cytochrome b gene, the control region and several RNAs. When compared with former mtDNA data, they provide the most comprehensive view of the African elephant phylogeny (78 mtDNA haplotypes, of which 44 are new) and provide the first insight into populations from the Democratic Republic of Congo. The genetic diversity of mtDNA was appraised and the stability of alternative phylogenetic trees was investigated. Our results are inconsistent with both those prior studies. They revealed two highly divergent molecular clades referred to as F and S, that do not conform to the morphological delineations of cyclotis and africana. A non‐negligible proportion of specimens of L. a. africana display haplotypes prevailing in forest elephant populations (clade F). The geographic distribution of clades and areas of their co‐occurrence support the hypothesis of incomplete isolation between forest and savannah African elephant populations, followed by recurrent interbreeding between the two forms. We state that the conclusions of prior studies resulted from insufficient character and/or geographic sampling. We conclude that there is no satisfying argument which can recognize two or more species of African elephants. We briefly comment on the meaning of such an attitude in a conservation viewpoint. © The Willi Hennig Society 2005.  相似文献   

9.
普洱市亚洲象栖息地适宜度评价   总被引:10,自引:5,他引:5  
刘鹏  代娟  曹大藩  李志宏  张立 《生态学报》2016,36(13):4163-4170
亚洲象(Elephas maximus)属于我国Ⅰ级保护动物,在中国仅分布于云南省西双版纳国家级自然保护区、普洱市的思茅区、澜沧县和江城县,以及临沧南滚河国家级自然保护区。将普洱全境作为研究区域,利用野外调查数据,结合遥感与地理信息系统技术,运用生态位因子分析(ENFA)模型对普洱市亚洲象的栖息地适宜度进行了评价,并预测了适宜栖息地的分布。发现:普洱市亚洲象栖息地的边际值为0.991,表明亚洲象在普洱市境内对环境变量的选择不是随机的;耐受值为0.315,表明亚洲象在普洱市境内生态位较窄,受环境条件的制约。根据模型计算得到的栖息地适宜度指数,将普洱市的亚洲象栖息地分为最适栖息地,较适栖息地,边际栖息地和非栖息地4个等级,面积分别为409.32、574.32、2909.48、38722.32 km2。最适栖息地仅占全市面积的0.96%,而非栖息地占90.86%。利用GIS和Biomapper 4.0生成亚洲象栖息地分布图,发现普洱境内最适栖息地和较适栖息地面积狭小。对最适栖息地、较适栖息地和边际栖息地进行景观格局分析的结果表明,3种类型的栖息地破碎化均十分严重,连通度较低,栖息地内受到较大程度的人类活动的干扰。因此建议在普洱和西双版纳间尽快建立野生动物生态廊道,以加强亚洲象各种群间的交流。  相似文献   

10.
Sex allocation theories predict equal offspring number of both sexes unless differential investment is required or some competition exists. Left undisturbed, elephants reproduce well and in approximately even numbers in the wild. We report an excess of males are born and substantial juvenile mortality occurs, perinatally, in captivity. Studbook data on captive births (CB, n = 487) and premature deaths (PD, <5 years of age; n = 164) in Asian and African elephants in Europe and North America were compared with data on Myanmar timber (Asian) elephants (CB, n = 3070; PD, n = 738). Growth in CB was found in three of the captive populations. A significant excess of male births occurred in European Asian elephants (ratio: 0.61, P = 0.044) and in births following artificial insemination (0.83, P = 0.003), and a numerical inclination in North American African elephants (0.6). While juvenile mortality in European African and Myanmar populations was 21–23%, it was almost double (40–45%) in all other captive populations. In zoo populations, 68–91% of PD were within 1 month of birth with stillbirth and infanticide being major causes. In Myanmar, 62% of juvenile deaths were at >6 months with maternal insufficient milk production, natural hazards and accidents being the main causes. European Asian and Myanmar elephants PD was biased towards males (0.71, P = 0.024 and 0.56, P < 0.001, respectively). The skewed birth sex ratio and high juvenile mortality hinder efforts to help captive populations become self-sustaining. Efforts should be invested to identify the mechanism behind these trends and seek solutions for them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号