首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

2.
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.  相似文献   

3.
A novel peptide called ghrelin or motilin-related-peptide (MTLRP) was found in the stomach of various mammals. We studied its effect on the motor function of the rat gastrointestinal tract. In normal, conscious unoperated animals, ghrelin/MTLRP (5 or 20 microg/kg iv) significantly accelerated the gastric emptying of a methylcellulose liquid solution (gastric residue after 15 min: 57 +/- 7, 42 +/- 11, 17 +/- 4, and 9 +/- 3% of the ingested meal with doses of 0, 1, 5, and 20 microg/kg iv, respectively) Transit of the methylcellulose liquid solution was also accelerated by ghrelin/MTLRP in the small intestine but not in the colon. Des-[Gln(14)]ghrelin, also found in the mammalian stomach, was as potent as ghrelin in emptying the stomach (gastric residue after 15 min: 12 +/- 3% at a dose of 20 microg/kg iv). In rats in which postoperative gastrointestinal ileus had been experimentally induced, ghrelin/MTLRP (20 microg/kg iv) reversed the delayed gastric evacuation (gastric residue after 15 min: 28 +/- 7% of the ingested meal vs. 82 +/- 9% with saline). In comparison, the gastric ileus was not modified by high doses of motilin (77 +/- 7%) or erythromycin (82 +/- 6%) and was only partially improved by calcitonin gene-related peptide (CGRP) 8-37 antagonist (59 +/- 7%). Ghrelin/MTLRP, therefore, accelerates the gastric emptying and small intestinal transit of a liquid meal and is a strong prokinetic agent capable of reversing the postoperative gastric ileus in rat.  相似文献   

4.
Ghrelin stimulates gastric acid secretion and motility in rats   总被引:49,自引:0,他引:49  
Ghrelin, a novel growth-hormone-releasing peptide, was discovered in rat and human stomach tissues. However, its physiological and pharmacological actions in the gastric function remain to be determined. Therefore, we studied the effects of rat ghrelin on gastric functions in urethane-anesthetized rats. Intravenous administrations of rat ghrelin at 0.8 to 20 microgram/kg dose-dependently increased not only gastric acid secretion measured by a lumen-perfused method, but also gastric motility measured by a miniature balloon method. The maximum response in gastric acid secretion was almost equipotent to that of histamine (3 mg/kg, i.v.). Moreover, these actions were abolished by pretreatment with either atropine (1 mg/kg, s.c.) or bilateral cervical vagotomy, but not by a histamine H(2)-receptor antagonist (famotidine, 1 mg/kg, s.c.). These results taken together suggest that ghrelin may play a physiological role in the vagal control of gastric function in rats.  相似文献   

5.
Ghrelin is known to enhance gastric motility and accelerate gastric emptying of liquid and solid food in rats. As solid gastric emptying is regulated by the coordinated motor pattern between the antrum and pylorus (antro-pyloric coordination), we studied the correlation between solid gastric emptying and antro-pyloric coordination in response to ghrelin. Rats were given 1.5 g of solid food after a 24-h fasting. Immediately after the ingestion, ghrelin (0.4-8.0 microg/kg) or saline was administered by intraperitoneal (i.p.) injection. Ninety minutes after the feeding, rats were euthanized and gastric content was removed to calculate gastric emptying. To evaluate the antro-pyloric coordination, strain gauge transducers were sutured on the antrum and pylorus. The incidence of postprandial antro-pyloric coordination was compared between ghrelin-and saline-injected rats. In saline-injected rats, gastric emptying was 58.3+/-3.7% (n=6). Ghrelin (4.0-8.0 microg/kg), accelerated gastric emptying. Maximum effect was obtained by ghrelin (4.0 microg/kg), which significantly accelerated gastric emptying to 77.4+/-3.7% (n=6, p<0.05). The number of antro-pyloric coordination 20-40 min after feeding was significantly increased in ghrelin-injected rats, compared to that of saline-injected rats (n=4, p<0.05). It is suggested that enhanced antro-pyloric coordination play an important role in accelerated solid gastric emptying induced by ghrelin.  相似文献   

6.
Ghrelin, a recently discovered peptide hormone, is produced by endocrine cells in the stomach, the so-called A-like cells. Ghrelin binds to the growth hormone (GH) secretagogue receptor and releases GH. It is claimed to be orexigenic and to control gastric acid secretion and gastric motility. In this study, we examined the effects of ghrelin, des-Gln14-ghrelin, des-octanoyl ghrelin, ghrelin-18, -10 and -5 (and motilin) on gastric emptying in mice and on gastric acid secretion in chronic fistula rats and pylorus-ligated rats. We also examined whether ghrelin affected the activity of the predominant gastric endocrine cell populations, G cells, ECL cells and D cells. Ghrelin and des-Gln14-ghrelin stimulated gastric emptying in a dose-dependent manner while des-octanoyl ghrelin and motilin were without effect. The C-terminally truncated ghrelin fragments were effective but much less potent than ghrelin itself. Ghrelin, des-Gln14-ghrelin and des-octanoyl ghrelin neither stimulated nor inhibited gastric acid secretion, and ghrelin, finally, did not affect secretion from either G cells, ECL cells or D cells.  相似文献   

7.
BACKGROUND: Glucagon stimulation is routinely used as a provocative test to assess growth hormone (GH) sufficiency in pediatrics. Ghrelin also markedly stimulates GH secretion. Because glucagon stimulates the promoter of the ghrelin gene in vitro as well as ghrelin secretion by the perfused rat stomach, we sought to determine whether ghrelin mediates glucagon-induced GH secretion. METHODS: We compared ghrelin, GH, insulin and glucose responses following administration of 0.03 mg/kg intravenously (iv; max. 1 mg) and 0.1 mg/kg intramuscularly (im; max. 2 mg) of glucagon in two groups (n = 10-11/group) of GH-sufficient children. We also measured ghrelin before and 6 min after iv administration of 1 mg glucagon in 21 adult subjects. RESULTS: In children, glucagon caused a 26% decrease in ghrelin and a 72% increase in glucose concentrations that were independent of the dose or administration route of glucagon. In contrast, the insulin response was 2-3 times higher following administration of 0.1 mg/kg im compared to 0.03 mg/kg of glucagon iv. There was a significant correlation between the maximum decrease in ghrelin and increases in glucose (p = 0.03) but not in insulin. There was a significant correlation between ghrelin and GH area under the curve after controlling for the dose of glucagon (p = 0.03) but not for the maximum increase in glucose.In normal adults, glucagon administration caused a 7% decrease in ghrelin concentrations after 6 min (p = 0.0002). CONCLUSION: Ghrelin does not play a causal role in the GH response to pharmacological glucagon administration, which suppresses ghrelin levels starting a few minutes after injection.  相似文献   

8.
Gaskin FS  Farr SA  Banks WA  Kumar VB  Morley JE 《Peptides》2003,24(6):913-918
Ghrelin is a newly discovered gastric peptide, which has orexigenic effects. Ghrelin is the endogenous ligand for the growth hormone secretagogue receptor and stimulates growth hormone and gastrointestinal motility. We have previously shown that nitric oxide (NO) plays an important role as a mediator of feeding induced by a variety of neuropeptides. This raises the question of whether ghrelin's effects are NO dependent. Here, we first determined that intracerebroventricular administration of 100 ng of ghrelin significantly increased food intake in satiated mice. We next examined the effects of N(omega)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, on ghrelin-induced increase in food intake. A subthreshold dose (12.5mg/kg; SC) of L-NAME significantly blocked the ghrelin-induced increase in food intake. Ghrelin administration increased the levels of nitric oxide synthase in the hypothalamus. This supports the hypothesis that nitric oxide is a central regulator of food consumption.  相似文献   

9.
Ghrelin, an endogenous ligand for growth hormone secretagogue receptor, was identified in the rat stomach. This peptide acts through nitric oxide (NO) by expressing endothelial nitric oxide synthase (eNOS) and down regulating inducible nitric oxide synthase (iNOS) at its gastroproprotective effect against restraint stress induced damage. Recently the ghrelin receptor has also been detected in peripheral systems including immune tissue. We have investigated the possible effect of ghrelin on phagocytic activity of peritoneal macrophages in acute cold-restraint stress (ACRS) exposed rats. The rats were divided into control, stress and ghrelin groups. In ghrelin groups, single dose and three days consecutive dose of ghrelin (20 microg/kg. i.p.) were applied to rats that were exposed to ACRS for 4 h. 1 ml of saline was injected i.p. after ACRS for 3 consecutive days to the rats of the stress groups. Ghrelin administration reduced the increased phagocytic activity induced by ACRS. We conclude that ghrelin exerts an important role at macrophage phagocytic activity in ACRS exposed rats.  相似文献   

10.
The interaction between ghrelin and bombesin or amylin administered intraperitoneally on food intake and brain neuronal activity was assessed by Fos-like immunoreactivity (FLI) in nonfasted rats. Ghrelin (13 microg/kg ip) increased food intake compared with the vehicle group when measured at 30 min (g/kg: 3.66 +/- 0.80 vs. 1.68 +/- 0.42, P < 0.0087). Bombesin (8 microg/kg) injected intraperitoneally with ghrelin (13 microg/kg) blocked the orexigenic effect of ghrelin (1.18 +/- 0.41 g/kg, P < 0.0002). Bombesin alone (4 and 8 microg/kg ip) exerted a dose-related nonsignificant reduction of food intake (g/kg: 1.08 +/- 0.44, P > 0.45 and 0.55 +/- 0.34, P > 0.16, respectively). By contrast, ghrelin-induced stimulation of food intake (g/kg: 3.96 +/- 0.56 g/kg vs. vehicle 0.82 +/- 0.59, P < 0.004) was not altered by amylin (1 and 5 microg/kg ip) (g/kg: 4.37 +/- 1.12, P > 0.69, and 3.01 +/- 0.78, respectively, P > 0.37). Ghrelin increased the number of FLI-positive neurons/section in the arcuate nucleus (ARC) compared with vehicle (median: 42 vs. 19, P < 0.008). Bombesin alone (4 and 8 microg/kg ip) did not induce FLI neurons in the paraventricular nucleus of the hypothalamus (PVN) and coadministered with ghrelin did not alter ghrelin-induced FLI in the ARC. However, bombesin (8 microg/kg) with ghrelin significantly increased neuronal activity in the PVN approximately threefold compared with vehicle and approximately 1.5-fold compared with the ghrelin group. Bombesin (8 microg/kg) with ghrelin injected intraperitoneally induced Fos expression in 22.4 +/- 0.8% of CRF-immunoreactive neurons in the PVN. These results suggest that peripheral bombesin, unlike amylin, inhibits peripheral ghrelin induced food intake and enhances activation of CRF neurons in the PVN.  相似文献   

11.
The effect of capsaicin on basal and pentagastrin-stimulated gastric acid secretion was investigated in the urethane anaesthetized acute gastric fistula rat. Gastric acid secretion was measured by flushing of the gastric lumen with saline every 15 min or by continuous gastric perfusion. Capsaicin given into the rat stomach at 120 ng x mL(-1) prior to pentagastrin (25 microg x kg(-1), iv) reduced gastric acid secretory response to pentagastrin by 24%. Intravenous (iv) capsaicin (0.5 microg x kg(-1)) did not reduce the pentagastrin-stimulated gastric acid secretion. After topical capsaicin desensitization (3 mg x mL(-1)), basal gastric acid secretion and that in response to pentagastrin (25 microg x kg(-1), intraperitonaeally) was unaltered compared with the control group. Data indicate that topical capsaicin inhibits gastric acid secretion stimulated with pentagastrin in anaesthetized rats.  相似文献   

12.
The effect of luminal ghrelin on pancreatic enzyme secretion in the rat   总被引:1,自引:0,他引:1  
Ghrelin, a 28-amino-acid peptide produced predominantly by oxyntic mucosa has been reported to affect the pancreatic exocrine function but the mechanism of its secretory action is not clear. The effects of intraduodenal (i.d.) infusion of ghrelin on pancreatic amylase outputs under basal conditions and following the stimulation of pancreatic secretion with diversion of pancreato-biliary juice (DPBJ) as well as the role of vagal nerve, sensory fibers and CCK in this process were determined. Ghrelin given into the duodenum of healthy rats at doses of 1.0 or 10.0 microg/kg increased pancreatic amylase outputs under basal conditions or following the stimulation of pancreatic secretion with DPBJ. Bilateral vagotomy as well as capsaicin deactivation of sensory fibers completely abolished all stimulatory effects of luminal ghrelin on pancreatic exocrine function. Pretreatment with lorglumide, a CCK(1) receptor blocker, reversed the stimulation of amylase release produced by intraduodenal application of ghrelin. Intraduodenal ghrelin at doses of 1.0 or 10.0 microg/kg increased plasma concentrations of CCK and ghrelin. In conclusion, ghrelin given into the duodenum stimulates pancreatic enzyme secretion. Activation of vagal reflexes and CCK release as well as central mechanisms could be implicated in the stimulatory effect of luminal ghrelin on the pancreatic exocrine functions.  相似文献   

13.
Ghrelin acts in the central nervous system to stimulate gastric acid secretion   总被引:37,自引:0,他引:37  
Ghrelin is a novel acylated peptide that functions in the regulation of growth hormone release and energy metabolism. It was isolated from rat stomach as an endogenous ligand for growth hormone secretagogue receptor. Ghrelin is also localized in the arcuate nucleus of rat hypothalamus. Intracerebroventricular (ICV) administration increases food intake and body weight. We examined the effect of ghrelin on gastric acid secretion in urethane-anesthetized rats and found that ICV administration of ghrelin increased gastric acid output in a dose-dependent manner. Vagotomy and administration of atropine abolished the gastric acid secretion induced by ghrelin. ICV administration of ghrelin also induced c-fos expression in the neurons of the nucleus of the solitary tract and the dorsomotor nucleus of the vagus, which are key sites in the central nervous system for regulation of gastric acid secretion. Our results suggest that ghrelin participates in the central regulation of gastric acid secretion by activating the vagus system.  相似文献   

14.
Ghrelin has been shown to accelerate gastric emptying in animals where its effect appeared mediated through the vagus nerve. We aimed to verify the gastrokinetic capacity of ghrelin in human. Patients with gastroparesis attributed to a neural dysregulation by diabetes (n = 5) or surgical vagotomy (n = 1) were evaluated. The emptying of a test meal (420 kcal) was determined by the C13 octanoic acid breath test. Saline or synthetic ghrelin 1-4 microg/kg were given in 1 min bolus at the end of the meal. T-lag and T-1/2 were shorter during ghrelin than during saline administration [33 +/- 5 min versus 65 +/- 14 min (p < 0.01) and 119 +/- 6 min versus 173 +/- 38 min (p < 0.001)]. Ghrelin injection therefore accelerated gastric emptying of a meal in humans even in presence of a deficient gastric innervation.  相似文献   

15.
The effects of intracerebroventricular (icv) or subcutaneous (sc) hexarelin (Hexa) administration, against gastric ulcers induced by ethanol (50%, 1 ml/rat/os) or Indomethacin (20 mg/kg/os) were examined in conscious rats. Hexa at 1 nmol/rat, icv or 10 nmol/kg, sc reduced ethanol-induced ulcers by 47% and 32% respectively. Hexa, but not ghrelin significantly worsened (+40%) Indomethacin-induced ulcers when injected sc. Hexa-gastroprotection against ethanol-induced ulcers was removed by the GHS-R antagonist (D-Lys3)-GRPR-6 and by the inhibitor of NO-synthase (NOS) Nω-nitro-L-arginine methyl ester. Semiquantitative RT-PCR assay of gastric NOS mRNA isoforms revealed that the reduction in iNOS-derived NO and the increase of constitutive-derived NO are relevant for the gastroprotection of Hexa against ethanol-induced gastric damage.  相似文献   

16.
Gastrin and ghrelin are secreted from G cells and X/A-like cells in the stomach, respectively, and respective hormones stimulate gastric acid secretion by acting through histamine and the vagus nerve. In this study, we examined the relationship between gastrin, ghrelin and gastric acid secretion in rats. Intravenous (iv) administration of 3 and 10 nmol of gastrin induced transient increases of ghrelin levels within 10 min in a dose-dependent manner. Double immunostaining for ghrelin and gastrin receptor revealed that a proportion of ghrelin cells possess gastrin receptors. Although (iv) administration of gastrin or ghrelin induced significant gastric acid secretion, simultaneous treatment with both hormones resulted in a synergistic, rather than additive, increase of gastric acid secretion. This synergistic increase was not observed in vagotomized rats.These results suggest that gastrin may directly stimulate ghrelin release from the stomach, and that both hormones may increase gastric acid secretion synergistically.  相似文献   

17.
In view of our previous data, showing that ghrelin and nitric oxide (NO) display apparently parallel effects on insulin secretion (inhibitory) and glucagon secretion (stimulatory), we have now investigated the effect of ghrelin on islet hormone secretion in relation to its effect on NO synthase (NOS) isoenzymes in isolated rat pancreatic islets. Dose-response studies revealed that ghrelin at concentrations of 0.01-1 micromol l-1 inhibited insulin secretion stimulated by 8.3 mmol l-1 glucose, while ghrelin at concentrations lower than the physiological range (0.01 pmol l-1 to 1 nmol l-1) were without effect. In contrast, glucagon secretion was stimulated by 1.0 nmol l-1 to 1 micromol l-1 ghrelin. These effects of ghrelin on insulin and glucagon secretion were accompanied by increased NO production through activation of neuronal constitutive NOS (ncNOS). Ghrelin had no appreciable effect on the activity of inducible NOS (iNOS) in the islets. Addition of an NO scavenger (cPTIO) or the NOS inhibitor L-NAME to the incubation medium prevented the effects of ghrelin on hormone secretion from isolated islets. The present results confirm our previous data showing that ghrelin inhibits insulin and stimulates glucagon secretion from pancreatic islets of the mouse and we now show similar effects in rat islets. The effects of ghrelin were accompanied by an increased rate of NO production. Conceivably, ncNOS activation partly accounts for to the inhibitory effect of ghrelin on insulin secretion and the stimulatory effect of ghrelin on glucagon secretion.  相似文献   

18.
Nitric oxide (NO) plays a role in regulating the mucosal integrity of the stomach. However, its part in the mucosal defense of the inflamed stomach remains unclear. In the present study, we examined the effects of various NO synthase (NOS) inhibitors on gastric ulcerogenic and acid secretory responses following daily exposure of the stomach to iodoacetamide and investigated the role of each NOS isozyme in gastric protection from subchronic mucosal irritation. Gastric mucosal irritation was induced in rats by addition of 0.1% iodoacetamide to drinking water, and the gastric mucosa was examined on the 6th day. L-NAME (a nonselective NOS inhibitor: 20 mg/kg) or aminoguanidine (a selective iNOS inhibitor: 20 mg/kg) was given s.c. twice 24 h and 3 h before the termination of iodoacetamide treatment. Giving iodoacetamide in drinking water for 5 days produced minimal damage in the stomach with an increase in myeloperoxidase (MPO) activity and lipid peroxidation. Iodoacetamide treatment up-regulated the expression of iNOS mRNA and NO production in the stomach, without affecting nNOS expression. Both L-NAME and aminoguanidine markedly aggravated gastric lesions induced by iodoacetamide treatment, with a further enhancement in MPO activity and lipid peroxidation. Basal acid secretion as determined in pylorous-ligated stomachs was decreased following iodoacetamide treatment, but the response was significantly restored by both L-NAME and aminoguanidine. These results suggest that endogenous NO derived from both cNOS and iNOS is involved in mucosal defense of the inflamed stomach, partly by decreasing acid secretion, and contributes to maintaining mucosal integrity under such conditions.  相似文献   

19.
Motilin and ghrelin constitute a peptide family, and these hormones are important for the regulation of gastrointestinal motility. In this study, we examined the effect of motilin and ghrelin on gastric acid secretion in anesthetized suncus (house musk shrew, Suncus murinus), a ghrelin- and motilin-producing mammal. We first established a gastric lumen-perfusion system in the suncus and confirmed that intravenous (i.v.) administration of histamine (1 mg/kg body weight) stimulated acid secretion. Motilin (0.1, 1.0, and 10 μg/kg BW) stimulated the acid output in a dose-dependent manner in suncus, whereas ghrelin (0.1, 1.0, and 10 μg/kg BW) alone did not induce acid output. Furthermore, in comparison with the vehicle administration, the co-administration of low-dose (1 μg/kg BW) motilin and ghrelin significantly stimulated gastric acid secretion, whereas either motilin (1 μg/kg BW) or ghrelin (1 μg/kg BW) alone did not significantly induce gastric acid secretion. This indicates an additive role of ghrelin in motilin-induced gastric acid secretion. We then investigated the pathways of motilin/motilin and ghrelin-stimulated acid secretion using receptor antagonists. Treatment with YM 022 (a CCK-B receptor antagonist) and atropine (a muscarinic acetylcholine receptor antagonist) had no effect on motilin or motilin-ghrelin co-administration-induced acid output. In contrast, famotidine (a histamine H2 receptor antagonist) completely inhibited motilin-stimulated acid secretion and co-administration of motilin and ghrelin induced gastric acid output. This is the first report demonstrating that motilin stimulates gastric secretion in mammals. Our results also suggest that motilin and co-administration of motilin and ghrelin stimulate gastric acid secretion via the histamine-mediated pathway in suncus.  相似文献   

20.
CCK and ghrelin exert antagonistic effects on ingestive behavior. The aim of the present study was to investigate the interaction between ghrelin and CCK administered peripherally on food intake and neuronal activity in specific hypothalamic and brain stem nuclei, as assessed by c-Fos-like immunoreactivity (c-FLI) in nonfasted rats. Ghrelin (13 microg/kg body wt) injected intraperitoneally significantly increased the cumulative food intake when measured at 30 min and 1 h after injection, compared with the vehicle group (2.9 +/- 1.0 g/kg body wt vs. 1.2 +/- 0.5 g/kg body wt, P < 0.028). Sulfated CCK octapeptide (CCK-8S) (2 or 25 microg/kg body wt) injected simultaneously blocked the orexigenic effect of ghrelin (0.22 +/- 0.13 g/kg body wt, P < 0.001 and 0.33 +/- 0.23 g/kg body wt, P < 0.0008), while injected alone, both doses of CCK-8S exerted a nonsignificant trend to reduce food intake. Ghrelin (13 microg/kg body wt ip) markedly increased the number of c-FLI-positive neurons per section in the arcuate nucleus (ARC) compared with vehicle (median: 31.35 vs. 9.86, P < 0.0001). CCK-8S (2 or 25 microg/kg body wt ip) had no effect on neuronal activity in the ARC, as assessed by c-FLI (median: 5.33 and 11.21 cells per section), but blocked the ghrelin-induced increase of c-fos expression in this area when both peptides were administered simultaneously (median: 13.33 and 12.86 cells per section, respectively). Ghrelin at this dose had no effect on CCK-induced stimulation of c-fos expression in the paraventricular nucleus of the hypothalamus and the nucleus of the solitary tract. These results suggest that CCK abolishes ghrelin-induced food intake through dampening increased ARC neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号