首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general method for protecting the 6 primary hydroxyl position of sucrose is described. It involves the production of glucose-6-acetate by fermentation of glucose using a strain of Bacillus megaterium followed by conversion to sucrose-6-acetate as a kinetic product using a specially selected fructosyl transferase producted by a newly isolated strain of Bacillus subtilis. The sucrose-6-acetate was found to be more lipophilic than expected, and this property aided its purification by chromatography. Pure sucrose-6-acetate may then be chlorinated and subsequently deacetylated to give the high-intensity sweetener 4,1',6'-trichlo-4,1',6'-trideoxygalactosucrose (sucralose) in high yields. This process involves fewer steps than are required for chemical synthesis using trityl chloride and acetic anhydride. Related intensely sweet molecules which were synthesized by similar methods included 4,1',6'-trichloro, 4,1',6'-trideoxy L-arabinosucrose, and 4,1',6'-trichloro-4,6,1',6'-tetradeoxy-galactosucrose. They were obtained from xylose and 6-deoxyglucose, respectively, via the intermediates xylsucrose and 6-deoxysucrose, formed by the reaction of the fructosyl transferase on the monosaccharide acceptors.  相似文献   

2.
The acid-catalysed reaction of 4,1',6'-trichloro-4,1',6'-trideoxy-galacto- sucrose (1) with 5.5 equiv. of 2-methoxypropene in N,N-dimethylformamide followed by acetylation gave 3',4'-di-O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O- isopropylidene-6-O-(1-methoxy-1-methylethyl)-galacto-sucrose (2, 2%), 6,3',4'- tri- O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O-isopropylidene-galacto -sucrose (3, 31%), 3',4'-di-O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O- isopropylidene- galacto-sucrose (4, 38%), 3'-O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O- isopropylidene- galacto-sucrose (5, 13%), and 2,3',4'-tri-O-acetyl-4,1',6'-trichloro- 4,1',6'-trideoxy-galacto-sucrose (6, 13%). Methylation of 4 followed by removal of the protecting groups gave 4,1',6'-trichloro-4,1',6'-trideoxy-6-O-methyl- galacto- sucrose (8). 4,1',6'-Trichloro-4,1',6'-trideoxy-3-O-methyl-galacto-sucrose (11) was synthesised from 6 by preferential tert-butyldiphenylsilylation of HO-6 followed by methylation and removal of the protecting groups. Likewise, 4,1',6'-trichloro- 4,1',6'-trideoxy-4'-O-methyl-galacto-sucrose (14) was synthesised from 5. Treatment of 3 with aqueous acetic acid followed by methylation and removal of the protecting groups afforded 4,1',6'-trichloro-4,1'6'-trideoxy-2,3-di-O-methyl- galacto-sucrose (17).  相似文献   

3.
Plant sucrose transporters (SUTs) are members of the glycoside-pentoside-hexuronide (GPH) cation symporter family (TC2.A.2) that is part of the major facilitator superfamily (MFS). All plant SUTs characterized to date function as proton-coupled symporters and catalyze the cellular uptake of sucrose. SUTs are involved in loading sucrose into the phloem and sink tissues, such as seeds, roots and flowers. Because monocots are agriculturally important, SUTs from cereals have been the focus of recent research. Here we present a functional analysis of the SUT ShSUT1 from sugarcane, an important crop species grown for its ability to accumulate high amounts of sucrose in the stem. ShSUT1 was previously shown to be expressed in maturing stems and plays an important role in the accumulation of sucrose in this tissue. Using two-electrode voltage clamping in Xenopus oocytes expressing ShSUT1, we found that ShSUT1 is highly selective for sucrose, but has a relatively low affinity for sucrose (K(0.5) = 8.26 mM at pH 5.6 and a membrane potential of -137 mV). We also found that the sucrose analog sucralose (4,1',6'-trichloro-4,1',6'-trideoxy-galacto-sucrose) is a competitive inhibitor of ShSUT1 with an inhibition coefficient (K(i)) of 16.5 mM. The presented data contribute to our understanding of sucrose transport in plants in general and in monocots in particular.  相似文献   

4.
As a short chain monoester, sucrose-6-acetate (S-6-a) is a key intermediate in the preparation of an eminent sweetener (sucralose). To replace the traditional multi-step chemical route for sucralose biosynthesis, enzymatic synthesis of S-6-a was investigated, using cross-linked enzyme aggregates (CLEAs) of Lipozyme TL 100 L. The optimal CLEA preparation conditions was obtained as follows: using 33.3% (v/v) PEG600 co-precipitated with additive of D-sorbierite, then cross-linking with 1.5% (v/v) glutaraldehyde at 0 °C for 4 h. As a result, the immobilized Lipozyme had high specific bioactivity (34.64 U/g) of transesterification in non-aqueous media. With these immobilized enzymes, the optimum transesterification conditions were investigated systematically, including CLEA loading, the mole ratio of vinyl acetate versus sucrose, temperature and reaction time, etc. The results showed that the highest concentration and yield of S-6-a was 49.8 g/L and 87.46%, respectively. Further experiments showed that the resulting CLEAs also had much higher operational stability than the commercial Lipozyme TLIM. The present work has paved a new path for the large-scale bioproduction of S-6-a with immobilized lipase in the future.  相似文献   

5.
P.M. Dey 《Phytochemistry》1981,20(7):1493-1496
The major sugars of fresh seeds of Castanea sativa were shown to be raffinose, stachyose and sucrose. Drying seeds at 25° for 14 weeks increased the ratio raffinose: stachyose from 1.1 to 3.5, reduced sucrose content by ca 50 % and decreased total extractable α-galactosidase. The enzyme activity was resolved into two peaks, a high MW form I (apparent MW215 000) and a low MW form II (apparent MW 53 000). The latter form was predominant in the extract of fresh seeds whereas the former was the main form in the 14-week dried seeds. An increase in the amount of enzyme I was also observed when a buffered extract (pH 5.5) of fresh seeds was stored at 4°. Enzymes I and II had pH optima of 4.5 and 6, respectively. Both enzymes hydrolysed p-nitrophenyl α-d-galactoside at a much greater rate than the natural substrates raffinose, stachyose, locust bean gum and carob gum. However, enzyme I showed preference for stachyose as compared to raffinose; the opposite order was observed for enzyme II.  相似文献   

6.
Reactivity of melezitose and raffinose under Mitsunobu reaction conditions   总被引:1,自引:0,他引:1  
The reactivity of melezitose and raffinose under Mitsunobu conditions was studied within the scope of the use of trisaccharides for the synthesis of fatty acid esters. Melezitose led to esters with preferential substitution at primary positions following the order of reactivity 6'>6>6'. Raffinose proved to be very reluctant toward ester formation in these conditions, leading mainly to the new 3',6'-anhydroraffinose.  相似文献   

7.
α-Galactosides are non-digestible carbohydrates widely distributed in plants. They are a potential source of energy in our daily food, and their assimilation by microbiota may play a role in obesity. In the intestinal tract, they are degraded by microbial glycosidases, which are often modular enzymes with catalytic domains linked to carbohydrate-binding modules. Here we introduce a bifunctional enzyme from the human intestinal bacterium Ruminococcus gnavus E1, α-galactosidase/sucrose kinase (AgaSK). Sequence analysis showed that AgaSK is composed of two domains: one closely related to α-galactosidases from glycoside hydrolase family GH36 and the other containing a nucleotide-binding motif. Its biochemical characterization showed that AgaSK is able to hydrolyze melibiose and raffinose to galactose and either glucose or sucrose, respectively, and to specifically phosphorylate sucrose on the C6 position of glucose in the presence of ATP. The production of sucrose-6-P directly from raffinose points toward a glycolytic pathway in bacteria, not described so far. The crystal structures of the galactosidase domain in the apo form and in complex with the product shed light onto the reaction and substrate recognition mechanisms and highlight an oligomeric state necessary for efficient substrate binding and suggesting a cross-talk between the galactose and kinase domains.  相似文献   

8.
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source. This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30. Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity. The optimal hydrolysis temperature for sucrose, raffinose and inulin was 55°C and the optimal pH for sucrose was 4.75. The apparent K m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively. Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides. The results obtained suggest the hypothesis that enzyme production was constitutive. Journal of Industrial Microbiology & Biotechnology (2000) 25, 63–69. Received 17 November 1999/ Accepted in revised form 30 May 2000  相似文献   

9.
Sucrose-6-acetate is an important intermediate in the preparation of sucralose (a finest sweetener). In our study, Candida rugosa lipase coated with surfactant was firstly immobilized on sol–gel supports. Then, the immobilized enzyme was used in the regioselective synthesis of sucrose-6-acetate by transesterification of sucrose and vinyl acetate. The screening results revealed that Tween 80 was an ideal surfactant to coat lipase immobilized in sol–gel and exhibited the highest yield of sucrose-6-acetate. Other factors that influenced the yield during the preparation process were also studied. Under optimal conditions, the yield of sucrose-6-acetate could reach up to 78.68 %, while free lipase was easily inactivated in polar solvent. Thermal and operational stabilities were also improved significantly. Surfactant-coated lipase immobilized in sol–gel remained stable when the temperature was higher than 60 °C. Moreover, they could maintain high catalytic activity after six recycles. This strategy is economical, convenient and promising for the food industry.  相似文献   

10.
Peterbauer T  Mach L  Mucha J  Richter A 《Planta》2002,215(5):839-846
Raffinose (O-alpha- D-galactopyranosyl-(1-->6)- O-alpha- D-glucopyranosyl-(1<-->2)- O-beta- D-fructofuranoside) is a widespread oligosaccharide in plant seeds and other tissues. Raffinose synthase (EC 2.4.1.82) is the key enzyme that channels sucrose into the raffinose oligosaccharide pathway. We here report on the isolation of a cDNA encoding for raffinose synthase from maturing pea ( Pisum sativum L.) seeds. The coding region of the cDNA was expressed in Spodoptera frugiperda Sf21 insect cells. The recombinant enzyme, a protein of glycoside hydrolase family 36, displayed similar kinetic properties to raffinose synthase partially purified from maturing seeds by anion-exchange and size-exclusion chromatography. Apart from the natural galactosyl donor galactinol ( O-alpha- D-galactopyranosyl-(1-->1)- L- myo-inositol), p-nitrophenyl alpha- D-galactopyranoside, an artificial substrate, was utilized as a galactosyl donor. An equilibrium constant of 4.1 was determined for the galactosyl transfer reaction from galactinol to sucrose. Steady-state kinetic analysis suggested that raffinose synthase is a transglycosidase operating by a ping-pong reaction mechanism and may also act as a glycoside hydrolase. The enzyme was strongly inhibited by 1-deoxygalactonojirimycin, a potent inhibitor for alpha-galactosidases (EC 3.2.1.22). The physiological implications of these observations are discussed.  相似文献   

11.
Raffinose oligosaccharides are major soluble carbohydrates in seeds and other tissues of plants. Their biosynthesis proceeds by stepwise addition of galactose units to sucrose, which are provided by the unusual donor galactinol (O-alpha-d-galactopyranosyl-(1-->1)-l-myo-inositol). Chain elongation may also proceed by transfer of galactose units between raffinose oligosaccharides. We here report on the purification, characterization, and heterologous expression of a multifunctional stachyose synthase (EC ) from developing pea (Pisum sativum L.) seeds. The protein, a member of family 36 of glycoside hydrolases, catalyzes the synthesis of stachyose, the tetrasaccharide of the raffinose series, by galactosyl transfer from galactinol to raffinose. It also mediates the synthesis of the pentasaccharide verbascose by galactosyl transfer from galactinol to stachyose as well as by self-transfer of the terminal galactose residue from one stachyose molecule to another. These activities show optima at pH 7.0. The enzyme also catalyzes hydrolysis of the terminal galactose residue of its substrates, but is unable to initiate the synthesis of raffinose oligosaccharides by galactosyl transfer from galactinol to sucrose. A minimum reaction mechanism which accounts for the broad substrate specificity and the steady-state kinetic properties of the protein is presented.  相似文献   

12.
The preference of female Sprague-Dawley rats for sucralose, a non-nutritive sweetener derived from sucrose, was evaluated in 23 h two-bottle tests with water or saccharin. Overall, the rats displayed weak or no preferences for sucralose (0.25-4 g/l) over water but strong preferences for saccharin (0.5-8 g/l) over water and saccharin (1 g/l) over sucralose (0.5 g/l). The rats also preferred a saccharin + sucrose mixture to sucrose, but sucrose to a sucralose + sucrose mixture. There were marked individual differences in sucralose preferences: about half the rats preferred sucralose to water at some concentrations while most remaining rats avoided sucralose. Both subgroups preferred saccharin to sucralose. Sucralose appears to have an aversive off-taste that reduces its palatability to rats.  相似文献   

13.
Kesari AN  Gupta RK  Watal G 《Phytochemistry》2004,65(23):3125-3129
Two new aurone glycosides, 6 hydroxy 5 methyl 3',4',5' trimethoxy aurone 4-O-alpha-L-rhamnopyranoside and 6,4' dihydroxy aurone 4-O-rutinoside have been isolated from the ethanolic extract of the wood of Pterocarpus santalinus. Their structures were determined on the basis of chemical and spectroscopic analysis (UV, IR, EIMS, (1)H and (13)C NMR).  相似文献   

14.
15.
Desiccation tolerance of protoplasts isolated from germinating pea (Pisum sativum L. cv. 'Alaska') embryonic axes depends, in part, on the osmotic strength and composition of the suspending medium. To determine the reason for this dependence and whether treatment with different solutions results in different types of damage, protoplast recovery and survival were assessed after dehydration to a range of water contents. Protoplasts were derived from germinating axes that had intermediate desiccation tolerance. Protoplasts were isolated and resuspended in buffers containing sucrose/raffinose (85:15, w/w) or sorbitol, which were isotonic or hypertonic to the cells of the embryonic axis, then were flash-dried to a range of water contents. Protoplasts were rehydrated and stained with fluorescein diacetate (FDA) to assess survival and to estimate two types of membrane injury: lysis and the loss of semipermeability. In all treatments, protoplast survival dropped sharply during the initial phase of dehydration due to lysis. Protoplast survival was greater in hypertonic sucrose/raffinose buffer than in isotonic sucrose/raffinose buffer, or in the latter made hypertonic by the addition of sorbitol. When sorbitol was substituted for sucrose/raffinose in either the isolation or desiccation buffer, or both, protoplast survival at intermediate and low hydrations decreased due to a loss of membrane semipermeability. The results indicate that additional sucrose/raffinose is beneficial for the desiccation tolerance of protoplasts, the benefit is not due to a simple osmotic effect, and the benefit is greatest at water contents less than 0.5 g g(-1) DW, where the presence of the sugars appears to protect membrane semipermeability.  相似文献   

16.
The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by alpha-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism.  相似文献   

17.
The possible role of fructosyl transferase in the biosynthesis of fructosans in Agave americana was investigated. This enzyme was extracted from A. americana stem and purified 17.5-fold by salt fractionation and DEAE-cellulose chromatography. The optimum conditions for the enzyme were pH 6. 1, temperature 37°, substrate concentration 20% and Km 3.6 × 10?1 M; Ag+, Pb 2+, Hg2+, Al3+, Sn2+, CN? acted as inhibitors and Ca2+, Mg2+, Co2+ and Li+ actemd as activators. Only sugars of the type F ~ R (R-aidose), e.g. sucrose and raffinose acted as substrates for the enzyme. The donor acceptor specificity of the enzyme was studied extensively. Sugars sucrose. None of the intermediates of fructosan biosynthesis from sucrpse acted as fructose donors. The possible acceptors from sucrose and raffinose. The enzyme was capable of building up oligosaccharides up to FIOG from sucrose. None of the intermediates of fructosan biosynthesis from sucrose acted as fructose donors. The possible mechanism of fructosan biosynthesis from sucrose is discussed.  相似文献   

18.
From a screening of several Kluyveromyces strains, the yeast Kluyveromyces marxianus CBS 6556 was selected for a study of the parameters relevant to the commercial production of inulinase (EC 3.2.1.7). This yeast exhibited superior properties with respect to growth at elevated temperatures (40 to 45°C), substrate specificity, and inulinase production. In sucrose-limited chemostat cultures growing on mineral medium, the amount of enzyme decreased from 52 U mg of cell dry weight−1 at D = 0.1 h−1 to 2 U mg of cell dry weight−1 at D = 0.8 h−1. Experiments with nitrogen-limited cultures further confirmed that synthesis of the enzyme is negatively controlled by the residual sugar concentration in the culture. High enzyme activities were observed during growth on nonsugar substrates, indicating that synthesis of the enzyme is a result of a derepression/repression mechanism. A substantial part of the inulinase produced by K. marxianus was associated with the cell wall. The enzyme could be released from the cell wall via a simple chemical treatment of cells. Results are presented on the effect of cultivation conditions on the distribution of the enzyme. Inulinase was active with sucrose, raffinose, stachyose, and inulin as substrates and exhibited an S/I ratio (relative activities with sucrose and inulin) of 15 under standard assay conditions. The enzyme activity decreased with increasing chain length of the substrate.  相似文献   

19.
In muskmelon ( Cucumis melo L.), sink tissues receive stachyose, raffinose and sucrose through phloem translocation of carbohydrates that are formed as products of leaf photosynthesis. Melon fruits accumulate sucrose massively during the final stages of maturation. This sucrose is derived partially from the catabolism of raffinose saccharides. Rapid galactose metabolism is required, because liberation of free galactose is the first step in the metabolic utilization of the raffinose sugars. The current study demonstrates that the enzyme UDP-glucose-hexose-1-P uridylyltransferase (EC 2.7.7.12), the central enzyme in the classical Lelior pathway, is not the central enzyme in galactose metabolism in muskmelon fruit. Rather, a broad substrate specificity UDP-galactose pyrophosphorylase (PPase) serves the same functional role. This enzyme accepts either UDP-galactose or UDP-glucose as a substrate and is different from a UDP-glucose PPase with more strict substrate specificity for UDP-glucose that is also present in melon tissue. UDP-galactose PPase was purified 113-fold from melon tissue and was shown to be a 54 kDa (size exclusion chromatography) to 68 kDa (SDS-PAGE) protein that is enzymatically active as a monomer. We also present evidence that the enzyme likely accepts UDP-galactose and UDP-glucose at the same catalytic site. Polyclonal antibodies prepared against this protein reacted with numerous other antigens in melon extracts, apparently as a result of the presence of common antigenic epitopes.  相似文献   

20.
Galactinol synthase (UDP-galactose:inositol galactosyltransferase) is the first unique enzyme in the biosynthetic pathway of raffinose saccharides. Its role as a regulator of carbon partitioning between sucrose and raffinose saccharides in developing soybean (Glycine max L. Merrill) seeds was examined. Galactinol synthase activity and concentrations of sucrose, stachyose, and raffinose were compared during seed development between two genotypes that were high and two genotypes that were low in mature seed raffinose saccharide concentration. In all genotypes, sucrose concentration increased as seed development progressed, but in both low raffinose saccharide genotypes, greater increases in sucrose concentration were observed late in seed development. Sucrose to stachyose ratios in mature seeds were 2.3-fold greater in low raffinose saccharide genotypes than in the high raffinose saccharide genotypes. During seed development, higher levels of galactinol synthase activity were observed in the high raffinose saccharide genotypes than in the low raffinose saccharide genotypes. A common linear relationship for all four soybean genotypes was shown to exist between galactinol formed estimated from galactinol synthase activity data and the concentration of galactose present in raffinose saccharides. Results of this study implied that galactinol synthase is an important regulator of carbon partitioning between sucrose and raffinose saccharides in developing soybean seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号