首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
霍乱弧菌和副溶血弧菌分离株的gyrB基因系统发育分析   总被引:1,自引:0,他引:1  
依据gyrB基因部分编码序列构建系统发育树以分类和鉴别霍乱弧菌和副溶血弧菌,并探讨其种系发生关系。扩增并测序13株霍乱弧菌、8株副溶血弧菌、2株嗜水气单胞菌及1株类志贺邻单胞菌的gyrB基因(编码DNA促旋酶B亚单位)序列,并采用距离法与最大似然法构建系统发育树。两种方法所构建的树结构完全一致,霍乱弧菌、副溶血弧菌、嗜水气单胞菌及类志贺邻单胞菌各自形成一个独立的簇。其中,霍乱肠毒素基因(ctxA)阳性的霍乱弧菌(8株O139群与2株O1群ElTor型)聚类成一分枝;3株副溶血弧菌临床株(1株2002年流行株,2株2004年分离株)与1日本菌株及2001年1株自环境分离的毒力株聚类。系统发育分析靶分子gyrB基因可以良好区分上述4种常见病原菌。产毒O139群霍乱弧菌与产毒O1群ElTor型霍乱弧菌关系密切。副溶血弧菌环境毒力株与本地区临床主要流行株在系统发育关系上较为接近,可能是潜在的致病菌。  相似文献   

2.
目的了解宁波地区环境来源海产品中副溶血弧菌血清学特点及毒力相关基因分布。方法采集并分离2013年6-10月宁波地区海产品中副溶血弧菌,对其进行O、K抗原血清学分型;并采用PCR或多重PCR的方法来检测溶血素基因(tlh、tdh、trh)、大流行群遗传标志基因(toxRS/new、orf8)和Ⅲ型分泌系统(T3SS1、T3SS2α、T3SS2β)基因。结果从海产品样本中分离鉴定到44株副溶血弧菌的菌株,分属于20种血清型,型别多样,未见优势血清型;溶血素基因检测发现3株tdh+trh-致病性菌株,遗传标志基因检测发现1株tdh+trh-toxRS/new+大流行株,其血清型为O3:K6型;Ⅲ型分泌系统基因检测发现T3SS1基因存在于所有的副溶血弧菌菌株中,而T3SS2α基因则主要分布在tdh+的菌株中。结论宁波地区环境中副溶血弧菌致病性菌株和大流行株的检出,说明该地区具有潜在的食源性疾病爆发的风险。  相似文献   

3.
建立了一种扩增最近发现的霍乱弧菌RTX毒素基因的PCR方法。在世界各地引起流行和散发霍乱病例的166株临床和环境霍乱弧菌分离物中,用PCR和Hep—2细胞细胞毒性试验发现它们都是产毒的。而在相关基因簇中有缺失的古典生物型标准株用这两种方法结果都是阴性。这是第一个用于鉴别O1群霍乱弧菌古典生物型菌株和E1 Tor生物型菌株以及包括O139血清型的其它非O1群菌株的快速基因分型方法。建立的PCR方法也可特异性地检测霍乱弧菌中的RTX毒素基因,因为用此RTX毒素特异性PCR以及Hep—2细胞毒性试验时副溶血弧菌、致腹泻性大肠杆菌、气单胞菌和邻单胞菌的临床分离株都是阴性。这些结果使霍乱弧菌中RTx毒素的特性明显了。其在细菌致病中的作用需要进一步研究。  相似文献   

4.
摘要:目的 研究辽宁省近三年副溶血性弧菌毒力基因携带、血清型分布及抗生素的耐药情况,为副溶血性弧菌疾病防治提供科学依据。方法 运用多重荧光定量PCR对2014?2016年共计317株食品中和临床分离出的副溶血性弧菌进行毒力基因tdh、trh和tlh检测,同时进行血清分型,并用肉汤稀释法测定对15种抗生素的耐药性。结果 317株分离菌中均携带tlh基因,其中有50.5%的菌株携带tdh基因。167株临床分离株中158株携带tdh基因,检出率为94.6%。317株副溶血性弧菌中85株不能进行K分型,其他菌株共分为29个血清型,167株临床分离株中71.3%为血清型为O3:K6。150株食品分离株中8%为血清型O2:K28,6%为血清型O2:K3。317株副溶血性弧菌对头孢唑啉耐药率达36.9%。结论 辽宁省副溶血性弧菌临床分离株多携带tdh毒力基因,食品分离株毒力基因tdh、trh携带率低。临床分离株中O3:K6血清型菌株均携带tdh基因,且更易产生耐药。辽宁省副溶血性弧菌食源性疾病菌株以携带tdh基因的O3:K6型菌株为主。食品分离株血清型分布比较分散,O2血清群为主要流行血清型。辽宁省地区副溶血性弧菌主要对β-内酰胺类和大环内酯类抗生素产生耐药性。  相似文献   

5.
2007~2008年间, 我们调查了浙江沿海地区海产品和养殖环境中副溶血弧菌的污染状况, 并分析了不同来源副溶血弧菌中主要毒力相关基因tdh、trh、ureC和T3SS2(vscC2、vcrD2)的分布特征及溶血表型与尿素酶表型。结果显示, 566份样品中共分离到395株副溶血弧菌, 检出率高达70%, 毒力相关基因分析结果发现, tdh基因阳性率为10.1%, trh与ureC基因阳性率分别为 20.0%与 11.1%, 40株tdh+菌中组成T3SS2的vscC2基因阳性率为32.5%, 其中38株tdh+菌的神奈川试验亦呈阳性; 但在44株trh+-ureC+菌株中, 尿素酶表型阳性只有6株。试验表明, 浙江沿海地区海产品及其养殖环境中副溶血弧菌污染状况比较严重, 且有相当比例的菌株携带毒力或疑似毒力基因。研究结果为深入探索副溶血弧菌的致病性、基因结构与功能(或表型)及其分子演化提供基础。  相似文献   

6.
[目的]比较深圳市食源性病例和外环境中分离的副溶血性弧菌在血清分布、毒力基因携带情况和分子分型方面的特征.[方法]血清凝集法检测菌株血清型,多重PCR检测毒力基因tdh和trh基因携带情况,脉冲场凝胶电泳(PFGE)分析基因分型特征.[结果]98株食源性病例分离株的主要血清型为O3∶K6(40.8%)、O1∶KUT(7...  相似文献   

7.
摘要:目的 对2013?2015年杭州地区腹泻患者副溶血弧菌(Vibrio parahaemolyticus)毒力基因的携带和耐药进行调查研究。方法 可疑菌株用全自动细菌鉴定仪(VITEK2 Compact,生物梅里埃,法国)进行鉴定,用PCR方法检测其8种毒力基因,用纸片扩散法检测13种抗生素的敏感性。结果 120株副溶血弧菌中,tdh+或trh+的致病菌株占95.0%(114株),tdh-且trh-的非致病株占5.0%(6株)。所有120株副溶血弧菌均含有T3SS1基因,T3SS2α基因主要存在于tdh+/trh-的菌株中,T3SS2β存在于trh+的菌株中,2株tdh-的菌株首次检出T3SS2α基因。本研究中大流行菌株占64.2%(77株),非大流行菌株占35.8%(43株)。多达65.8%的副溶血弧菌对氨苄西林耐药,而90.0%以上的副溶血弧菌对其他抗生素包括喹诺酮类、第三代头孢菌素类、氨基糖苷类、四环素类和磺胺类抗菌药物较敏感。结论 杭州地区腹泻来源的副溶血弧菌多为大流行菌株,对常见抗菌药物敏感性高,但耐药率有所上升,要加强监测并引起临床重视。  相似文献   

8.
目的了解副溶血性弧菌食物中毒和临床腹泻株Ⅲ型分泌系统的分布以及耐药特征。方法对食物中毒和临床腹泻分离到的共21株副溶血性弧菌进行毒力基因tdh、trh、T3SS1、T3SS2α、T3SS2β和toxR检测,并用VITEK 2 compact全自动微生物鉴定系统进行了耐药性分析。结果 21株菌株中tdh+/trh-占90.48%(19/21),tdh-/trh+和tdh-/trh-分别占4.76%、4.76%,未检测到tdh+/trh+菌株。T3SS1广泛存在于所有菌株中。T3SS2α存在于tdh+/trh-菌株,T3SS2β存在于tdh-/trh+菌株。1株食物中毒菌株毒力基因携带情况为tdh-/trh-/T3SS2α-/T3SS2β-。21株副溶血性弧菌对阿莫西林、头孢吡肟、抗菌素B、庆大霉素、环丙沙星和复方新诺明敏感,对氨苄西林完全耐药。结论食物中毒和临床腹泻分离到的菌株大多携带tdh基因,T3SS2α与tdh相关,而T3SS2β则存在于trh+菌株。未携带tdh和trh基因的食物中毒分离株表明副溶血性弧菌不仅仅依赖TDH和TRH发挥毒力作用,其致病机制具有多样性和复杂性。  相似文献   

9.
溶藻弧菌的毒力相关基因及其对小鼠的致病力   总被引:2,自引:0,他引:2  
【目的】通过多重PCR检测和小鼠动物实验,对溶藻弧菌环境分离株的毒力因子进行评估,以期获得较强致病菌株和弱致病菌株之间的差别,并初步探讨该菌毒力因子对小鼠的致病机理。【方法】采用多重PCR体系检测毒力相关基因,我妻氏血平板溶血实验和平板酶活实验检测溶藻弧菌株的溶血素和胞外酶;以昆明小白鼠为实验动物,攻毒方式为灌胃和腹腔注射,根据小鼠的致病症状和死亡情况来分析和对比溶藻弧菌的胞外分泌物以及菌体本身的毒性。【结果】10株溶藻弧菌产淀粉酶、卵磷脂酶的比例为100%,脂肪酶、明胶酶次之(为70%),脲酶均未被检出;神奈川现象阳性菌株率为60%。毒力基因检测的结果显示10株溶藻弧菌中toxR、Collagenase、tlh、FlaA、ompW、AspA、fur这些与毒力有关的基因均有分布,而toxS、trh、tdh、UreR并未检出。10株溶藻弧菌中的VA009对小鼠显示了较强的致病性,能造成腹腔积液,经腹腔注射感染此菌后7 d内死亡率高达80%。【结论】不同的溶藻弧菌对小鼠的致病性存在较大差异,溶藻弧菌菌体本身比胞外分泌物对其毒性的贡献要大,而副溶血弧菌的毒性则由其胞外分泌物起主要作用;比较我们筛选出的强致病菌株与弱致病菌株,其上述毒力基因的分布并没有差别,说明溶藻弧菌可能存在一套与副溶血弧菌不同的独立的毒力基因系统。  相似文献   

10.
【目的】建立同时检测副溶血性弧菌tox R、tdh、trh、tlh基因的四重PCR快速检测方法。【方法】分别以副溶血性弧菌的tox R、tdh、trh、tlh 4个基因为靶基因,设计4对特异性引物,对4对引物浓度和退火温度进行优化,获得最佳引物比例和扩增条件,建立快速检测致病性副溶血性弧菌的四重PCR体系。通过特异性验证、灵敏度验证以及模拟样品检测进行方法确认。【结果】四重PCR体系扩增条带与预期相符,即115 bp(tox R)、244 bp(tdh)、418 bp(trh)、759 bp(tlh)4个目的条带;用74株副溶血性弧菌和37株非目标菌的测试结果表明,所建立的方法有良好的特异性。该方法对模板DNA的检测灵敏度为50μg/L,纯培养物的检测灵敏度为6.7×103 CFU/m L;副溶血性弧菌含量为1.36 CFU/g的人工模拟样品增菌6 h后,tox R、tlh、tdh、trh 4个基因可同时被检出。【结论】该方法可实现同时检测携带tox R、tdh、trh、tlh 4种基因的副溶血性弧菌,对开展致病性副溶血性弧菌的检测研究具有一定现实意义。  相似文献   

11.
AIMS: To investigate the distribution of the virulence of two Vibrio species among different strains obtained from the mariculture systems on the coast of Guangdong in China and the correlation between the virulence strains and the virulence genes among Vibrio alginolyticus. METHODS: Besides three strains, 72 V. alginolyticus strains and seven Vibrio parahaemolyticus strains were examined by PCR or semi-nested PCR for the virulence genes (tlh, trh, tdh, toxR, toxRS, ctxA, VPI). Additionally, the virulence of 18 V. alginolyticus strains was tested. SIGNIFICANCE AND IMPACT OF THE STUDY: Virulence genes homologous to those in the V. parahaemolyticus and Vibrio cholerae are widely distributed among V. alginolyticus and V. parahaemolyticus in the coastal mariculture systems in Guangdong, China. Some of the V. alginolyticus strains are pathogenic to aquatic animals, and might have derived their virulence genes from V. parahaemolyticus or V. cholerae, representing a possible reservoir of these genes. However, there is no correlation between presence and absence of the virulence genes used to investigate V. alginolyticus and its virulent strains. In this report, we also show that tlh is distributed among V. alginolyticus.  相似文献   

12.
Alkaline phosphatase conjugated oligonucleotide probes were developed to detect the genes (tdh and trh) coding for the thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) of Vibrio parahaemolyticus. Using dot blot hybridization, probes were tested with 94 clinical isolates of V. parahaemolyticus. Results agreed well with those obtained using radio-labeled recombinant DNA probes for the genes tdh and trh. Specificity and sensitivity of enzyme tdh probes for detection of the trh gene were 100 and 93%, respectively, and those of the trh probes for trh gene detection were 93 and 86%, respectively. The tdh probes also hybridized with tdh-like genes processed by all strains of V. hollisae, and some strains of V. mimicus and V. cholerae non-O1, but neither tdh nor trh probes reacted with other bacterial species isolated from diarrheal stools. However, some V. parahaemolyticus strains that were negative with the enzyme trh probe hybridized weakly with a radio-labeled trh DNA fragment probe at medium stringency, and a few strains that were negative in high stringency conditions with a radio-labeled trh DNA fragment probe hybridized with the enzyme trh probe. This suggests that some strains of V. parahaemolyticus may carry another gene resembling trh.  相似文献   

13.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

14.
Vibrio parahaemolyticus, V. cholerae, and V. vulnificus were isolated from 10.3%, 1.0%, and 0.1% of 885 blue mussel samples, respectively. Four of the samples contained trh(+) V. parahaemolyticus, while no tdh-positive isolates were detected. The V. cholerae isolates were non-O:1/non-O:139 serotypes and were ctxA negative.  相似文献   

15.
The presence of three major virulence genes toxR, tcpA and ctxA as well as expression of several putative virulence factors were compared in 12 Vibrio cholerae O139 and non-O1,non-O139 strains of clinical and environmental origin. All the strains possessed the gene encoding the regulatory protein TOXR. None of the non-O1, non-O139 strains as well as one of the O139 environmental strains carried the genes for ctxA and tcpA. Statistically significant differences in hemagglutinin and hemolysin production were observed amongst the strains depending on the source of their isolation. Expression of extracellular enzymes such as protease, elastase, neuraminidase, phospholipase A and phospholipase C, however, did not vary significantly from the groups of strains isolated from different sources.  相似文献   

16.
Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >10(4) CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh(+) and trh(+) strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus.  相似文献   

17.
Vibrio cholerae is a free-living bacterium found in water and in association with plankton. V. cholerae non-O1/non-O139 strains are frequently isolated from aquatic ecosystems worldwide. Less frequently isolated are V. cholerae O1 and V. cholerae O139, the aetiological agents of cholera. These strains have two main virulence-associated factors, cholera toxin (CT) and toxin co-regulated pilus (TCP). By extracting total DNA from aquatic samples, the presence of pathogenic strains can be determined quickly and used to improve a microbiological risk assessment for cholera in coastal areas. Some methods suggested for DNA extraction from water samples are not applicable to all water types. We describe here a method for DNA extraction from coastal water and a multiplex polymerase chain reaction (PCR) for O1 and O139 serogroups. DNA extraction was successfully accomplished from 117 sea water samples collected from coastal areas of Perú, Brazil and the USA. DNA concentration in all samples varied from 20 ng to 480 micro g micro l-1. The sensitivity of the DNA extraction method was 100 V. cholerae cells in 250 ml of water. The specificity of multiplex O1/O139 PCR was investigated by analysing 120 strains of V. cholerae, Vibrio and other Bacteria species. All V. cholerae O1 and O139 tested were positive. For cholera surveillance of aquatic environments and ballast water, total DNA extraction, followed by V. cholerae PCR, and O1/O139 serogroup and tcpA/ctxA genes by multiplex PCR offers an efficient system, permitting risk analysis for cholera in coastal areas.  相似文献   

18.
AIMS: To study the incidence of Vibrio parahaemolyticus in seafoods, water and sediment by molecular techniques vs conventional microbiological methods. METHODS AND RESULTS: Of 86 samples analysed, 28 recorded positive for V. parahaemolyticus by conventional microbiological method, while 53 were positive by the toxR-targeted PCR, performed directly on enrichment broth lysates. While one sample of molluscan shellfish was positive for tdh gene, trh gene was detected in three enrichment broths of molluscan shellfish. CONCLUSIONS: Direct application of PCR to enrichment broths will be useful for the rapid and sensitive detection of potentially pathogenic strains of V. parahemolyticus in seafoods. SIGNIFICANCE AND IMPACT OF THE STUDY: Vibrio parahaemolyticus is an important human pathogen responsible for food-borne gastroenteritis world-wide. As, both pathogenic and non-pathogenic strains of V. parahaemolyticus exist in the seafood, application of PCR specific for the virulence genes (tdh & trh) will help in detection of pathogenic strains of V. parahaemolyticus and consequently reduce the risk of food-borne illness.  相似文献   

19.
Vibrio parahaemolyticus is an important human pathogen which can cause gastroenteritis when consumed in raw or partially-cooked seafood. A multiplex PCR amplification-based detection of total and virulent strains of V. parahaemolyticus was developed by targeting thermolabile hemolysin encoded by tl, thermostable direct hemolysin encoded by tdh, and thermostable direct hemolysin-related trh genes. Following optimization using oligonucleotide primers targeting tl, tdh and trh genes, the multiplex PCR was applied to V. parahaemolyticus from 27 clinical, 43 seafood, 15 environmental, 7 strains obtained from various laboratories and 19 from oyster plants. All 111 V. parahaemolyticus isolates showed PCR amplification of the tl gene; however, only 60 isolates showed amplification of tdh, and 43 isolates showed amplification of the trh gene. Also, 18 strains showed amplification of the tdh gene, but these strains did not show amplification of the trh gene. However, one strain exhibited amplification for the trh but not the tdh gene, suggesting both genes need to be targeted in a PCR amplification reaction to detect all hemolysin-producing strains of this pathogen. The multiplex PCR approach was successfully used to detect various strains of V parahaemolyticus in seeded oyster tissue homogenate. Sensitivity of detection for all three target gene segments was at least between 10(1)-10(2) cfu per 10 g of alkaline peptone water enriched seeded oyster tissue homogenate. This high level of sensitivity of detection of this pathogen within 8 h of pre-enrichment is well within the action level (10(4) cfu per 1 g of shell stock) suggested by the National Seafood Sanitation Program guideline. Compared to conventional microbiological culture methods, this multiplex PCR approach is rapid and reliable for accomplishing a comprehensive detection of V. parahaemolyticus in shellfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号