首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two neurosecretory centers, nucleus preopticus (NPO) and nucleus lateralis tuberis (NLT), are distinguished in the hypothalamus of Clarias batrachus L. The cell bodies of NPO are grouped into nucleus preopticus magnocellularis (NPM) and nucleus preopticus parvocellularis (NPP). The NLT is recognised into three divisions: pars rostralis, pars medialis and pars ventrolateralis. The neurons of both the NLT and NPO are aldehyde-fuchsin (AF) positive. The axons from NPO run into four or five bundles ventrolaterally and caudally for some distance before all of them from either side join ventromedially into a single thick cord of neurosecretory fibers which finally enters the pars intermedia to form the neurointermediate lobe. The fibers from NLT, which are separate from the neurosecretory fibers of the NPO, anastomose in the region of the pars distalis. The neurosecretory material (NSM) of NPO is transported by axonal route whereas that of NLT is by axonal as well as ependymovascular pathways. Hypophysectomy results in the increase of AF-positive material in the neurons of NPO shortly after the operation, but later on, the material begins to deplete in them. The AF-positive material at the cut end of neurosecretory fibers, however, accumulates. The AF-positive material in the cell bodies of NLT is also depleted, but the nuclei increase in size, after hypophysectomy.  相似文献   

2.
Summary The cytology of the growth-hormone (GH) cells of the goldfish pituitary were examined following electrothermic lesions of the anterior praeoptic hypothalamus and telencephalon. Following lesions of the nucleus preopticus (NPO) light microscopy of the pituitary revealed a significant increase in the nuclear diameter and a degranulation of the GH cells. Lesions of the telencephalon anterior or dorsal to the NPO had no cytological effect on the GH cells. The ultrastructural appearance of the GH cells of NPO-lesioned fish was characterized by a marked degranulation of the cytoplasm and a proliferation of the rough endoplasmic reticulum indicative of enhanced secretory activity. The GH cells of the proximal pars distalis (PPD) are directly innervated by peptidergic (type A) and aminergic-like (type B) neurosecretory axons. Following lesions of the NPO, there was a marked reduction in the number of type A fibers in the PPD. These results suggest that the type A fibers innervating the GH cells originate in the NPO and act to inhibit the secretory activity of the GH cells.  相似文献   

3.
Summary The nucleus praeopticus (NPO) is located on both sides of the preoptic recess and is composed of a pars parvocellularis and a pars magnocellularis. Only in the rainbow trout does the pars magnocellularis consist of separately located medium-sized cells and very large cells. Cytologically, three cell types can be distinguished: 1) unipolar cells ending in the cerebrospinal fluid (CSF), 2) bipolar cells also ending in the CSF and forming an axon, and 3) multipolar cells which generally do not have a direct connection with the ventricle.Axons originate from the cell bodies forming the paired preopticohypophysial tract that runs along the border of the diencephalon and the optic tract. A considerable number of NPO fibers leading to the hypophysis makes close contact with the cell bodies of the pars lateralis of the nucleus lateralis tuberis, indicating a functional relationship. Most NPO fibers terminate in the caudal part of the neurohypophysis, around blood capillaries and at the basal lamina of the pars intermedia. Far fewer fibers appear to terminate near the boundary of the neurohypophysis and the rostral and proximal pars distalis.The nucleus lateralis tuberis (NLT) is located in the caudal hypothalamus, beginning at the rostral end of the horizontal commissure and extending caudally beyond the hypophysial stalk. It consists of the partes rostralis, medialis, lateralis and ventrolateralis. In both species the p. rostralis contains small subependymal neurons and some larger ones. Only in the p. medialis of the Atlantic salmon are large cells present. In both species the most prominent part is the p. lateralis, which consists solely of large cells. Cells situated between the p. medialis and the p. lateralis are grouped in the p. ventrolateralis. It was impossible to trace the axons originating in the NLT, since the cyto- and axoplasm could not be stained specifically.The structure of the NPO and NLT in the two salmonid species is compared with that of other teleosts.  相似文献   

4.
Specific, fluorescent, subependymal perikarya were found in the pars anterior of the paraventricular organ (PVOpa), in the nucleus recessus lateralis (NRL) and in the nucleus recessus posterioris (NRP). No fluorescent perikarya were present in the nucleus lateralis tuberis (NLT). Fluorescent nerve tracts connect the PVOpa and the NRL with the NRP, and interconnect the paired NRP. The nucleus preopticus (NPO) and the NLT receive a large input of aminergic nerve fibers. The monoaminergic nuclei are well vascularized, and their vascular plexes seem to be connected. A capillary plexus is situated dorsal to the NRP and exhibits no contact with the pituitary. It is surrounded by the prominent fluorescent tracts connecting the aminergic nuclei.  相似文献   

5.
Abstract Numerous fluorescent varicosities surround most of the caudal neurosecretory neurons and also regularly occur among pars intermedia cells of the adenohypophysis in the teleost, Gillichthys mirabilis. The color of the varicosities, as well as their responses to pharmacological treatments, is diagnostic of catecholaminergic neurons and processes. No fluorescence characteristic of monamines is found in the rostral pars distalis, in the proximal pars distalis or in the cells of the nucleus lateralis tuberis (NLT), although fluorescent varicosities are found within the ventral hypothalamus in the vicinity of the NLT. Bilateral clusters of fluorescent cell bodies are located in the ventral hypothalamus (posterior to the NLT); some of these cells border the neurohypophysis. Fluorescent tracts from these cell clusters extend to a pair of elongate nuclei of nonfluorescent neurons which are surrounded by fluorescent varicosities. Alteration of osmotic conditions did not effect the fluorescence, except for the caudal neurosecretory cells of fish exposed to fresh water for long periods. Adrenergic nervous input thus seems to be an important component of both the cranial and caudal neurosecretory systems.  相似文献   

6.
Summary Melanin-concentrating hormone (MCH) has been purified from the chum salmon pituitary. Its complete amino acid sequence has recently been established. To identify the precise site of origin of MCH, immunostaining was performed in the brain and pituitary gland of the chum salmon and the rainbow trout using a highly sensitive and specific antiserum raised against synthetic MCH. In these two salmonid species immunoreactivity for MCH was detected in neurons and neuronal processes in the pars lateralis of the nucleus lateralis tuberis (NLT) in the basal hypothalamus. Numerous positive-staining processes of these MCH-neurons project to the pituitary gland, extending into neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. No pituitary cells showed cross-reactivity. These results suggest that MCH is biosynthesized in the neurons of the NLT/pars lateralis and released in the neurohypophysis. On the other hand, prominent but less numerous MCH-positive processes could be traced to the pretectal area in which projection of both optic and pineal fibers has been detected using tracers. This observation suggests that the synthesis and/or release of MCH might be under the influence of either of these photosensory neurons. Moreover, the existence of an extrahypothalamic projection from MCH-positive neurons suggests that, in addition to melanin-concentration, MCH might be involved in other neuronal functions, perhaps serving as neuromodulator in the brain.  相似文献   

7.
Summary The distribution of gonadotropin-releasing hormone (GnRH) immunoreactivity was studied in the African catfish, Clarias gariepinus, by means of immunofluorescence and immunoperoxidase techniques. Immunoreactive neurons were found throughout the preoptic nucleus (NPO). However, only a portion of the secretory perikarya in the NPO showed a positive reaction by use of an anti-LHRH serum. Numerous immunoreactive fibres were found to enter the pituitary and to terminate in its proximal pars distalis, the site of concentration of the gonadotropic cells. Since GnRH is present in the brain and pituitary of the African catfish, the lack of spontaneous ovulation in captivity is apparently due to an insufficient release of GnRH.  相似文献   

8.
Summary An antiserum to growth hormone-releasing factor (GRF) 1-44 was applied on brain and pituitary sections of nine teleost species. Immunoreactive (ir) perikarya were demonstrated in parvo- and magnocellular portions of the preoptic nucleus (PON) and occasionally in the nucleus lateralis tuberis. The two tracts originating in the PON ran ventro-laterally toward the optic chiasm and then caudally in the basal hypothalamus. In the pars distalis (PD) of the eel, carp, goldfish and salmonids, GRF-ir fibers did not enter the rostral PD and few fibers passed close to somatotropes. In.Myoxocephalus andMugil, a variable number of ir-fibers passed close to cells of the rostral and proximal PD. In the neurointermediate lobe, GRF-ir fibers were located exclusively in the neural tissue of the eel and trout. In goldfish, carp andMyoxocephalus, GRF-ir fibers entered the intermediate lobe. This antiserum also labeled corticotrops and, to a lesser extent, melanotrops in the pituitary of cyprinids. A variable number of perikarya contained both GRF and vasotocin in the PON of the eel. In all teleost species studied so far, the distribution patterns of GRF are different, and the function of the various adenohypophysial cell types appears to be differently modulated, according to the variable distribution of GRF in the pituitary.  相似文献   

9.
In the rainbow trout the pars lateralis is the most prominent part of the nucleus lateralis tuberis (NLT). To demonstrate a morphological relationship between this lateral part of the NLT and the pituitary, immunocytochemistry was applied as a staining method. Experiments were carried out on glutaraldehyde-picric acid-acetic acid-fixed brain sections of mature male and female rainbow trout using the peroxidase-anti-peroxidase immune technique with an antiserum against 27-S-methylglucagon as the first antibody. Most of the cells in the NLT/pars lateralis reacted with the antiserum. Axons from these cells enter the pituitary, extending exclusively in the numerous neurohypophysial digitations in the pars intermedia. No immunoreactive neurohypophysial protrusions were found in those parts of the adenohypophysis where the gonadotropic cells are located, indicating that the lateral part of the NLT is not directly involved in the control of gonadotropin secretion. In addition to cells of the NLT/pars lateralis only prolactin cells in the rostral pars distalis of the adenohypophysis reacted with the antiserum used.  相似文献   

10.
The hypothalamo-neurohypophysial complex of Ailia coila is well demonstrated with the help of in situ staining procedure. Both pars magnocellularis and pars parvocellularis components of the nucleus preopticus contribute to the formation of the right and the left main neurosecretory tracts. Anterior one third of these tracts are loosely set and posteriorly they became more compact. From the posterior two thirds of the main tracts several pairs of lateral tracts were given off which join at the midline to form the paired median tracts. The median and the main tracts jointly enter the pituitary as the common tract. The common tract on entering the pituitary often divides into two or more branches and enter the pars intermedia independently. The rostral pars distalis is least innervated by the neurosecretory axons. Since the proximal pars distalis has varying amount of AF-positive cells, and the pars intermedia has the bulk of the neurosecretory axons both these regions are stained dark in the in situ preparations. Bulk preparations provide a clear topographic picture of the entire neurosecretory system, which is very difficult to visualise in tissue sections and in their reconstructions.  相似文献   

11.
Summary Distribution of monoamine oxidase (MAO) was histochemically examined in the hypothalamo-hypophysial region of the eel (Anguilla japonica) and the medaka (Oryzias latipes) with a modified Glenner's tryptamine-tetrazolium method. The hypothalamic neurosecretory cells showed very weak MAO activity in their perikarya. MAO-positive fibers were present in close contact with the neurosecretory cells, suggesting that monoaminergic fibers participate in the control of neurosecretory cell activity. The nucleus lateralis tuberis (NLT) contained cells exhibiting strong MAO activity. These cells must be monoaminergic neurons.In the anterior region of the neurohypophysis of both eel and medaka, two bundles of MAO-positive fibers originating from the NLT proceed down along each side of the third ventricle into the pars distalis. This suggests that monoaminergic neurons of the NLT are involved in the release of hormones from the pars distalis. In addition to these tracts, numerous MAO-positive fibers proceed backward from the post-optic area and end around the blood capillaries located between the neurohypophysis and the pars intermedia in both species.I wish to express my gratitude to Prof. H. Kobayashi for his valuable advice during the course of this study. I am indebted to Prof. S. Uchida, Ocean Research Institute, University of Tokyo, for supplying the eels.  相似文献   

12.
Summary Immunostaining of brain and pituitary sections of teleost fishes (eels, salmonidae, cyprinidae, gourami, sculpin, mullet) with anti porcine galanin (GAL) revealed the presence of immunoreactive (ir) perikarya and a rich network of fibers. Ir-perikarya were located rostrodorsally to the recessus preopticus, and in the posterior tuberal hypothalamus. Ir-fibers were abundant in basal telencephalon and around diencephalic ventricular recesses but never contacted their lumen. Furthermore, they were observed in basal hypothalamus, brainstem and ventral medulla. Ir-fibers passed along corticotropic (ACTH), gonadotropic cells and somatotropes (GH cells) in eel and trout pars distalis, but rarely ended in caudal neurohypophysis. In goldsfish pituitary ir-fibers occurred in neural digitations and among different cell types which however did not contain a GAL-like peptide. The relation GAL fibers/GH cells appeared more evident in species with a high growth rate. The other species showed a similar distribution of brain GAL. In eels and trout, ir-perikarya were not observed in areas containing somatostatin, GH- and ACTH-releasing factor, and ACTH-like perikarya, suggesting that GAL did not coexist with these peptides. The widespread distribution of a GAL-like peptide in teleost brain suggests that it could play a role of neurotransmitter and/or neuromodulator and regulate the secretion of adenohypophysial hormone(s). Abbreviations used in the text: GAL galanin. In the brain: CSF cerebrospinal fluid; NLT nucleus lateralis tuberis; NPO nucleus preopticus; NPP nucleus preopticus periventricularis; NPVa nucleus periventricularis anterior; NRP nucleus recessus posterioris; RI recessus infundibularis; RL recessus lateralis; RPO recessus preopticus. In the pituitary: ACTH corticotropin; CRF corticotropin-releasing factor; GH growth hormone; GRF growth hormone-releasing factor; GTH gonadotropin; MSH melanotropin; NH neurohypophysis; NIL: neurointermediate lobe; PPD proximal pars distalis; RPD proximal pars distalis  相似文献   

13.
Summary Extravascular circulation in the pituitary of Mugil cephalus was investigated by injecting live fish with horseradish peroxidase and studying the distribution of the enzyme in the gland. The principal components of the extravascular circulatory system are the pericapillary spaces, and, arising from them, the interlobular and circumhypophyseal spaces. Extensions of these spaces penetrate the glandular parenchyma of the pars distalis, where they merge with pericellular spaces. In the neurohypophysis, pericapillary spaces are connected to the periaxonal spaces.Capillaries penetrating from the proximal neurohypophysis into the pars distalis are accompanied by neurosecretory axons. These axons form a mass of tissue which is limited near the capillaries by the pericapillary spaces and near the adenohypophysis by the interlobular spaces. Toward the interior of the adenohypophysis the amount of nervous tissue accompanying the capillaries progressively diminishes, thus reducing the distance between pericapillary and interlobular spaces. Within the pars distalis, the neurosecretory axons accompanying the capillaries are sparse, and the secretory and stellate cells are mostly located directly adjacent to the pericapillary spaces. In the neuro-intermediate lobe, interlobular spaces outline the neuro-adenohypophyseal boundary.The relationship between extravascular spaces and hormone-secreting cells varies in the different regions of the adenohypophysis depending upon the type of neurosecretory innervation in the respective region. In the regions of prolactin and gonadotropin cells, where neurosecretory axons are in direct contact with the secretory cells, the hormone-secreting and stellate cells are adjacent to the pericapillary spaces. In the regions of ACTH and STH cells, secretory and stellate cells are found adjacent to the interlobular spaces, which are interposed between the cells and the neurosecretory axons.Abbreviations AH adenohypophysis - CH circumhypophyseal - DNH distal neurohypophysis - HRP horseradish peroxidase - NH neurohypophysis - NS neurosecretory - PD pars distalis - PI pars intermedia - PPD proximal pars distalis - RNH rostral neurohypophysis - RPD rostral pars distalis This research was supported by a grant from the National Council for Research and Development, Israel, and the GKSS Geesthacht-Tesperhude, Federal Republic of Germany  相似文献   

14.
We examined orexin-like immunoreactivity in the pituitary of the red-bellied piranha (Pygocentrus nattereri). Orexin-B-immunoreactive (IR) cells corresponded to luteinizing hormone (LH)-containing cells in the pars distalis, and orexin-B-IR fibers corresponded to melanin-concentrating hormone (MCH)-containing fibers in the pars nervosa. In the pars distalis, orexin-B-IR puncta that were also immunoreactive for MCH were observed around the orexin-B-IR cells. In the ventral hypothalamus, orexin-B-IR and MCH-IR neurons were found in the nucleus lateralis tuberis. Immunoelectron-microscopic analysis revealed that the orexin-B-like substance co-localized with LH in secretory granules and with MCH in MCH-containing neurons. Some of the MCH secreted in the pituitary might participate in the modulation of LH secretion from the gonadotrophs, together with orexin-B, leading to food intake by the stimulation of growth hormone secretion from the somatotrophs.  相似文献   

15.
In C. punctatus the median eminence includes the subterminal region of the hypothalamus and the anterior neurohypophysis. It is formed of ependymal, fibrous and reticular layers as in the tetrapods. Primary capillary plexus extends from the subterminal region to the extremity of the anterior neurohypophysis. Only few portal vessels from the hypothalamus enter in the pars distalis. All the components of pituitary including the pars intermedia are irrigated by the secondary plexus formed from the portal vessels emerging out of the anterior neurohypophysis. The neurosecretory axons and the ependymal cells are in close morphological contact with the primary plexus. Several axons have perivascular endings at the median eminence. Some axons were found to be only silver or aldehyde fuchsin positive whereas some others take up both. The silver positive axons were abundant in the pars distalis and the AF positive ones were more concentrated in the pars intermedia with greater accumulation of neurosecretory material.  相似文献   

16.
Melanin-concentrating hormone (MCH) was first discovered in the pituitary of chum salmon because of its role in the regulation of skin pallor. Later, it was found that MCH could also play a role as a central neurotransmitter or neuromodulator in the brain. However, knowledge of the function of MCH in fish has been restricted to certain fish species. Therefore, in the present study, the immunocytochemical localization and ontogenic development of MCH in the brain of a pleuronectiform fish, the barfin flounder Verasper moseri, were examined to obtain a better understanding of this hormone. In adult barfin flounder, MCH-immunoreactive (ir) neuronal somata were most prevalent in the magnocellular neurons of the nucleus tuberis lateralis (NLT), which project to the pituitary. In the pituitary, MCH-ir fibers were distributed in the neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. MCH-ir neuronal somata were also present in dorsally projecting parvocellular neurons, located more posteriorly in the area above the lateral ventricular recess (LVR). LVR-MCH neurons did not seem to project to the pituitary. In the brain, MCH-ir fibers were detected not only in the hypothalamus but also in areas such as the optic tectum and thalamus. MCH-ir neuronal somata and fibers were not detected on the day of hatching. MCH-ir neuronal somata and fibers were first detected in the hypothalamus and the pituitary, respectively, 7 days after hatching. Subsequently, MCH-ir neuronal somata were observed in the NLT and in the area above the LVR 14 days after hatching. The distribution of MCH-ir neuronal somata and fibers showed a pattern similar to that in the adult fish 35-42 days after hatching. These results indicate that MCH neurons were located in the NLT and in the area above the LVR and that NLT-MCH neurons project to the pituitary. MCH neurons were first detected 7 days after hatching, suggesting that MCH plays some physiological role in the early development of barfin flounder.  相似文献   

17.
Summary The monoaminergic innervation of the goldfish pituitary gland was studied by means of light- and electronmicroscopic radioautography after in vitro administration of 3H-dopamine. The tracer was specifically incorporated and retained by part of the type-B fibers innervating the different lobes of the pituitary. In the rostral pars distalis labeled fibers were most frequently observed in contact with the basement membrane separating the neurohypophysis and the adenohypophysis. In the proximal pars distalis and the pars intermedia, labeled profiles were detected in the neural tissue and in direct contact with the different types of secretory cells.According to the previous data concerning the uptake and retention of tritiated catecholamines in the central nervous system, it is assumed that the labeled fibers are mainly catecholaminergic (principally dopaminergic). This study provides morphological evidence for a neuroendocrine function of catecholamines in the goldfish.  相似文献   

18.
The hypothalamo-hypophysial vascular relationship and intra-hypophysial vasculatisation have been described in order to understand the regulatory mechanism of hypothalamic control over the functions of the pituitary gland. In Glossogobius giuris, the disposition of the blood vessels in the head region is on typical teleostean pattern with certain modifications. The nucleus preopticus is supplied through the nucleus preopticus artery, a small blood vessel arising from the anterior branch of the posterior cerebral artery, whereas the pituitary gland receives blood through a pair of hypophysial arteries. The blood from the pituitary is drained off by the pituitary veins whch pour their blood into the supra-orbital sinus. The anterior cerebral vein after taking the blood from anterior part of the brain including the hypothalamus and the nucleus preopticus joins with the supra-orbital sinus. The hypothalamo-hypophysial portal system is absent in this fish. The saccus vasculosus receives blood from the posterior cerebral artery through a small blood vessel and is collected by a prominent saccus vasculosus vein which pours blood into the supra-orbital sinus before it joins the infra-orbital sinus to form the heat vein. There seems to be no physological connection between the saccus vasculosus and pituitary gland. The highly vascularised neurohypophysis interdigitate with the pars intermedia and extends upto the proximal pars distalis. The blood vessels are restricted to the neurohypophysial extensions only. However, in the rostral pars distalis the blood vessels are present but the neurohypophysis does not extend to this part. The blood capillaries enter the rostral pars distalis from the capillary network on the surface of pituitary gland along with the connected tissue covering of the pituitary. The neurohypophysis shows a greater vascularisation in comparison to that of the other glandular part of the pituitary gland. In the present study of Glossogobius giuris, though an extensive ramification of neurohypophysis occurs with the pars intermedia and the proximal pars distalis, the neurosecretory axons do not innervate the endocrine cells of the pituitary gland and the blood vessels are found restricted to the neurohypophysial extensions except that of the rostral pars distalis. The neuro-vascular way of hypothalamic control over the functions of the pituitary gland seems to be justified as the neurosecretory fibres have been found associated with the blood vessels.  相似文献   

19.
Summary A galanin-like peptidergic system was demonstrated in the brain of Anguilla. A group of immunoreactive perikarya was located in the nucleus preopticus periventricularis close to the recessus preopticus. Galaninergic fibers occurred in various brain areas. Galanin identified in mammalian pituitary cells was undetectable in fish adenohypophysial cells. Estradiol increased the immunostaining of the rostral perikarya and brain fibers in both male and female European eels kept in fresh water and in female American eels in sea water. Methyltestosterone, an aromatizable androgen, increased galanin immunoreactivity in rostral perikarya and brain fibers of male European eels and female American eels. The cross-sectional area of these perikarya increased significantly after both treatments whereas cell bodies of the posteroventral hypothalamus were slightly affected. Dihydrotestosterone showed no clear effect. Fibers close to the corticotropes were sometime increased, but galanin synthesis was not induced in pituitary cells. In contrast, estradiol induced galanin synthesis in rat pituitary cells, but had a still controversed effect on hypothalamic galanin. A putative influence of galanin on the pituitary-gonadal axis is discussed as gonadal hormones diversely affect gonadotropes and gonosomatic indices in Anguilla. Abbreviations used in the text: DHT dihydrotestosterone; E2 estradiol; GAL galanin; ir immunoreactive; MT methyltestosterone. In the brain: CSF cerebrospinal fluid; NLT nucleus lateralis tuberis; NPP nucleus preopticus periventricularis; NRL nucleus recessus lateralis; NRP nucleus recessus posterioris. In the pituitary: ACTH corticotropin; GH growth hormone; GTH gonadotropin; NH neurohypophysis; PPD proximal pars distalis; PRL prolactin; RPD rostral pars distalis, TSH thyrotropin  相似文献   

20.
Summary The changes in the nucleus praeopticus (NPO) pars magnocellularis of the frog Rana tigrina were studied after electrical stimulation of the left testis. After a 3-min stimulation, the neurones of the nucleus showed a statistically significant increase in the nuclear and cellular diameters. The lateral neurones in particular showed a complete loss of Nissl substance and other acute chromatolytic changes. In the aldehyde fuchsin stained preparations, however, the perikarya appeared filled with clumps of intensely stained neurosecretory material (NSM) and disintegrating cell nuclei. The NSM was discharged in the axons, resulting in an increase in number and size of the Herring bodies. These changes were abolished in frogs whose testes had been pre-anaesthetized with xylocaine. Based on these observations, the possible existence of an afferent pathway from the testis to the NPO pars magnocellularis is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号