首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The asexual blood stages of the human malaria parasite Plasmodium falciparum produce highly immunogenic polymorphic antigens that are expressed on the surface of the host cell. In contrast, few studies have examined the surface of the gametocyte-infected erythrocyte.

Methodology/Principal Findings

We used flow cytometry to detect antibodies recognising the surface of live cultured erythrocytes infected with gametocytes of P. falciparum strain 3D7 in the plasma of 200 Gambian children. The majority of children had been identified as carrying gametocytes after treatment for malaria, and each donated blood for mosquito-feeding experiments. None of the plasma recognised the surface of erythrocytes infected with developmental stages of gametocytes (I–IV), but 66 of 194 (34.0%) plasma contained IgG that recognised the surface of erythrocytes infected with mature (stage V) gametocytes. Thirty-four (17.0%) of 200 plasma tested recognised erythrocytes infected with trophozoites and schizonts, but there was no association with recognition of the surface of gametocyte-infected erythrocytes (odds ratio 1.08, 95% C.I. 0.434–2.57; P = 0.851). Plasma antibodies with the ability to recognise gametocyte surface antigens (GSA) were associated with the presence of antibodies that recognise the gamete antigen Pfs 230, but not Pfs48/45. Antibodies recognising GSA were associated with donors having lower gametocyte densities 4 weeks after antimalarial treatment.

Conclusions/Significance

We provide evidence that GSA are distinct from antigens detected on the surface of asexual 3D7 parasites. Our findings suggest a novel strategy for the development of transmission-blocking vaccines.  相似文献   

2.
Goodman BA  Johnson PT 《PloS one》2011,6(5):e20193

Background

By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite''s phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions.

Methodology/Principal Findings

By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ∼50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period.

Conclusions/Significance

Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.  相似文献   

3.
4.

Background

The expression of the clonally variant virulence factor PfEMP1 mediates the sequestration of Plasmodium falciparum infected erythrocytes in the host vasculature and contributes to chronic infection. Non-cytoadherent parasites with a chromosome 9 deletion lack clag9, a gene linked to cytoadhesion in previous studies. Here we present new clag9 data that challenge this view and show that surface the non-cytoadherence phenotype is linked to the expression of a non-functional PfEMP1.

Methodology/Principal Findings

Loss of adhesion in P. falciparum D10, a parasite line with a large chromosome 9 deletion, was investigated. Surface iodination analysis of non-cytoadherent D10 parasites and COS-7 surface expression of the CD36-binding PfEMP1 CIDR1α domain were performed and showed that these parasites express an unusual trypsin-resistant, non-functional PfEMP1 at the erythrocyte surface. However, the CIDR1α domain of this var gene expressed in COS-7 cells showed strong binding to CD36. Atomic Force Microscopy showed a slightly modified D10 knob morphology compared to adherent parasites. Trafficking of PfEMP1 and KAHRP remained functional in D10. We link the non-cytoadherence phenotype to a chromosome 9 breakage and healing event resulting in the loss of 25 subtelomeric genes including clag9. In contrast to previous studies, knockout of the clag9 gene from 3D7 did not interfere with parasite adhesion to CD36.

Conclusions/Significance

Our data show the surface expression of non-functional PfEMP1 in D10 strongly indicating that genes other than clag9 deleted from chromosome 9 are involved in this virulence process possibly via post-translational modifications.  相似文献   

5.

Background

The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.

Methods

Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.

Results

Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.

Conclusions

Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.  相似文献   

6.

Background

To avoid spleen-dependent killing mechanisms parasite-infected erythrocytes (IE) of Plasmodium falciparum malaria patients have the capacity to bind to endothelial receptors. This binding also known as sequestration, is mediated by parasite proteins, which are targeted to the erythrocyte surface. Candidate proteins are those encoded by P. falciparum multicopy gene families, such as var, rif, stevor or PfMC-2TM. However, a direct in vivo proof of IE sequestration and expression of multicopy gene families is still lacking. Here, we report on the analysis of IE from a black African immigrant, who received the diagnosis of a malignant lymphoproliferative disorder and subsequently underwent splenectomy. Three weeks after surgery, the patient experienced clinical falciparum malaria with high parasitemia and circulating developmental parasite stages usually sequestered to the vascular endothelium such as late trophozoites, schizonts or immature gametocytes.

Methodology/Principal Findings

Initially, when isolated from the patient, the infected erythrocytes were incapable to bind to various endothelial receptors in vitro. Moreover, the parasites failed to express the multicopy gene families var, A-type rif and stevor but expression of B-type rif and PfMC-2TM genes were detected. In the course of in vitro cultivation, the parasites started to express all investigated multicopy gene families and concomitantly developed the ability to adhere to endothelial receptors such as CD36 and ICAM-1, respectively.

Conclusion/Significance

This case strongly supports the hypothesis that parasite surface proteins such as PfEMP1, A-type RIFIN or STEVOR are involved in interactions of infected erythrocytes with endothelial receptors mediating sequestration of mature asexual and immature sexual stages of P. falciparum. In contrast, multicopy gene families coding for B-type RIFIN and PfMC-2TM proteins may not be involved in sequestration, as these genes were transcribed in infected but not sequestered erythrocytes.  相似文献   

7.

Introduction

Asymptomatic persons infected with the parasites causing visceral leishmaniasis (VL) usually outnumber clinically apparent cases by a ratio of 4–10 to 1. We describe patterns of markers of Leishmania donovani infection and clinical VL in relation to age in Bihar, India.

Methods

We selected eleven villages highly endemic for Leishmania donovani. During a 1-year interval we conducted two house to house surveys during which we collected blood samples on filter paper from all consenting individuals aged 2 years and above. Samples were tested for anti-leishmania serology by Direct Agglutination Test (DAT) and rK39 ELISA. Data collected during the surveys included information on episodes of clinical VL among study participants.

Results

We enrolled 13,163 persons; 6.2% were reactive to DAT and 5.9% to rK39. Agreement between the tests was weak (kappa = 0.30). Among those who were negative on both tests at baseline, 3.6% had converted to sero-positive on either of the two tests one year later. Proportions of sero-positives and sero-converters increased steadily with age. Clinical VL occurred mainly among children and young adults (median age 19 years).

Discussion

Although infection with L. donovani is assumed to be permanent, serological markers revert to negative. Most VL cases occur at younger ages, yet we observed a steady increase with age in the frequency of sero-positivity and sero-conversion. Our findings can be explained by a boosting effect upon repeated exposure to the parasite or by intermittent release of parasites in infected subjects from safe target cells. A certain proportion of sero-negative subjects could have been infected but below the threshold of antibody abundance for our serologic testing.  相似文献   

8.

Background

Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood.

Methodology/Principal Findings

In order to explore the role of the Low Density Lipoprotein receptor (LDLr) in T. cruzi invasion, we evaluated LDLr parasite interactions using immunoblot and immunofluorescence (IFA) techniques. These experiments demonstrated that T. cruzi infection increases LDLr levels in infected host cells, inhibition or disruption of LDLr reduces parasite load in infected cells, T. cruzi directly binds recombinant LDLr, and LDLr-dependent T. cruzi invasion requires PIP2/3. qPCR analysis demonstrated a massive increase in LDLr mRNA (8000 fold) in the heart of T. cruzi infected mice, which is observed as early as 15 days after infection. IFA shows a co-localization of both LDL and LDLr with parasites in infected heart.

Conclusions/Significance

These data highlight, for the first time, that LDLr is involved in host cell invasion by this parasite and the subsequent fusion of the parasitophorous vacuole with the host cell lysosomal compartment. The model suggested by this study unifies previous models of host cell invasion for this pathogenic protozoon. Overall, these data indicate that T. cruzi targets LDLr and its family members during invasion. Binding to LDL likely facilitates parasite entry into host cells. The observations in this report suggest that therapeutic strategies based on the interaction of T. cruzi and the LDLr pathway should be pursued as possible targets to modify the pathogenesis of disease following infection.  相似文献   

9.

Background

Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans.

Methodology/Principal Findings

We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA) and two antigens: merozoite surface protein 1 42 kDa (MSP-142) and circumsporozoite protein gene (CSP) were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-142 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite) and P. hylobati (a gibbon parasite) suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-142 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites.

Conclusion

The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host switches from other non-human primates.  相似文献   

10.
Alteration of the adhesive and mechanical properties of red blood cells caused by infection with the malaria parasite Plasmodium falciparum underpin both its survival and extreme pathogenicity. A unique family of parasite putative exported kinases, collectively called FIKK (Phenylalanine (F) – Isoleucine (I) – Lysine (K) – Lysine (K)), has recently been implicated in these pathophysiological processes, however, their precise function in P. falciparum-infected red blood cells or their likely role in malaria pathogenesis remain unknown. Here, for the first time, we demonstrate that one member of the FIKK family, FIKK4.2, can function as an active kinase and is localised in a novel and distinct compartment of the parasite-infected red blood cell which we have called K-dots. Notably, targeted disruption of the gene encoding FIKK4.2 (fikk4.2) dramatically alters the parasite’s ability to modify and remodel the red blood cells in which it multiplies. Specifically, red blood cells infected with fikk4.2 knockout parasites were significantly less rigid and less adhesive when compared with red blood cells infected with normal parasites from which the transgenic clones had been derived, despite expressing similar levels of the major cytoadhesion ligand, PfEMP1, on the red blood cell surface. Notably, these changes were accompanied by dramatically altered knob-structures on infected red blood cells that play a key role in cytoadhesion which is responsible for much of the pathogenesis associated with falciparum malaria. Taken together, our data identifies FIKK4.2 as an important kinase in the pathogenesis of P. falciparum malaria and strengthens the attractiveness of FIKK kinases as targets for the development of novel next-generation anti-malaria drugs.  相似文献   

11.

Background

An important factor influencing the transmission dynamics of vector-borne diseases is the contribution of hosts with different parasitemia (no. of parasites per ml of blood) to the infected vector population. Today, estimation of this contribution is often impractical since it relies exclusively on limited-scale xenodiagnostic or artificial feeding experiments (i.e., measuring the proportion of vectors that become infected after feeding on infected blood/host).

Methodology

We developed a novel mechanistic model that facilitates the quantification of the contribution of hosts with different parasitemias to the infection of the vectors from data on the distribution of these parasitemias within the host population. We applied the model to an ample data set of Leishmania donovani carriers, the causative agent of visceral leishmaniasis in Ethiopia.

Results

Calculations facilitated by the model quantified the host parasitemias that are mostly responsible for the infection of vector, the sand fly Phlebotomus orientalis. Our findings indicate that a 3.2% of the most infected people were responsible for the infection of between 53% and 79% (mean – 62%) of the infected sand fly vector population.

Significance

Our modeling framework can easily be extended to facilitate the calculation of the contribution of other host groups (such as different host species, hosts with different ages) to the infected vector population. Identifying the hosts that contribute most towards infection of the vectors is crucial for understanding the transmission dynamics, and planning targeted intervention policy of visceral leishmaniasis as well as other vector borne infectious diseases (e.g., West Nile Fever).  相似文献   

12.

Background

Malaria remains a major global health concern. The development of novel therapeutic strategies is critical to overcome the selection of multiresistant parasites. The subtilisin-like protease (SUB1) involved in the egress of daughter Plasmodium parasites from infected erythrocytes and in their subsequent invasion into fresh erythrocytes has emerged as an interesting new drug target.

Findings

Using a computational approach based on homology modeling, protein–protein docking and mutation scoring, we designed protein–based inhibitors of Plasmodium vivax SUB1 (PvSUB1) and experimentally evaluated their inhibitory activity. The small peptidic trypsin inhibitor EETI-II was used as scaffold. We mutated residues at specific positions (P4 and P1) and calculated the change in free-energy of binding with PvSUB1. In agreement with our predictions, we identified a mutant of EETI-II (EETI-II-P4LP1W) with a Ki in the medium micromolar range.

Conclusions

Despite the challenges related to the lack of an experimental structure of PvSUB1, the computational protocol we developed in this study led to the design of protein-based inhibitors of PvSUB1. The approach we describe in this paper, together with other examples, demonstrates the capabilities of computational procedures to accelerate and guide the design of novel proteins with interesting therapeutic applications.  相似文献   

13.

Background

Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown.

Methodology/Principal Findings

Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice.

Conclusions/Significance

Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction.  相似文献   

14.

Background

Trichinella spiralis is an unusual parasitic intracellular nematode causing dedifferentiation of the host myofiber. Trichinella proteomic analyses have identified proteins that act at the interface between the parasite and the host and are probably important for the infection and pathogenesis. Many parasitic proteins, including a number of metalloproteins are unique for the nematodes and trichinellids and therefore present good targets for future therapeutic developments. Furthermore, detailed information on such proteins and their function in the nematode organism would provide better understanding of the parasite - host interactions.

Methodology/Principal Findings

In this study we report the identification, biochemical characterization and localization of a novel poly-cysteine and histidine-tailed metalloprotein (Ts-PCHTP). The native Ts-PCHTP was purified from T. spiralis muscle larvae that were isolated from infected rats as a model system. The sequence analysis showed no homology with other proteins. Two unique poly-cysteine domains were found in the amino acid sequence of Ts-PCHTP. This protein is also the first reported natural histidine tailed protein. It was suggested that Ts-PCHTP has metal binding properties. Total Reflection X-ray Fluorescence (TXRF) assay revealed that it binds significant concentrations of iron, nickel and zinc at protein:metal ratio of about 1∶2. Immunohistochemical analysis showed that the Ts-PCHTP is localized in the cuticle and in all tissues of the larvae, but that it is not excreted outside the parasite.

Conclusions/Significance

Our data suggest that Ts-PCHTP is the first described member of a novel nematode poly-cysteine protein family and its function could be metal storage and/or transport. Since this protein family is unique for parasites from Superfamily Trichinelloidea its potential applications in diagnostics and treatment could be exploited in future.  相似文献   

15.
Altermatt F  Ebert D 《PloS one》2007,2(12):e1280

Background

Different evolutionary hypotheses predict a correlation between the fitness of a genotype in the absence of infection and the likelihood to become infected. The cost of resistance hypothesis predicts that resistant genotypes pay a cost of being resistant and are less fit in the absence of parasites. The inbreeding-infection hypothesis predicts that the susceptible individuals are less fit due to inbreeding depression.

Methods and Results

Here we tested if a host''s natural infection status was associated with its fitness. First, we experimentally confirmed that cured but formerly infected Daphnia magna are genetically more susceptible to reinfections with Octosporea bayeri than naturally uninfected D. magna. We then collected from each of 22 populations both uninfected and infected D. magna genotypes. All were treated against parasites and kept in their asexual phase. We estimated their relative fitness in an experiment against a tester genotype and in another experiment in direct competition. Consistently, we found no difference in competitive abilities between uninfected and cured but formerly infected genotypes. This was the case both in the presence as well as in the absence of sympatric parasites during the competition trials.

Conclusions

Our data do not support the inbreeding-infection hypothesis. They also do not support a cost of resistance, however ignoring other parasite strains or parasite species. We suggest as a possible explanation for our results that resistance genes might segregate largely independently of other fitness associated genes in this system.  相似文献   

16.

Background

The virulence of Plasmodium falciparum malaria is related to the parasite’s ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on dome-shaped protrusions called knobs on the IE surface is central to both. Differences in receptor specificity and affinity of expressed PfEMP1 are important for IE adhesiveness, but it is not known whether differences in the number and size of the knobs on which the PfEMP1 proteins are expressed also play a role. Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density.

Methodology/Principal Findings

We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates from Ghanaian children with malaria and 10 P. falciparum isolates selected in vitro for expression of a particular PfEMP1 protein (VAR2CSA) were examined. Knob density increased from ∼20 h to ∼35 h post-invasion, with significant variation among isolates. The knob density ex vivo, which was about five-fold higher than following long-term in vitro culture, started to decline within a few months of culture. Although knob diameter and height varied among isolates, we did not observe significant time-dependent variation in these dimensions.

Conclusions/Significance

The density of knobs on the P. falciparum-IE surface depends on time since invasion, but is also determined by the infecting isolate in a time-independent manner. This is the first study to quantitatively evaluate knob densities and dimensions on different P. falciparum isolates, to examine ex vivo isolates from humans, and to compare ex vivo and long-term in vitro-cultured isolates. Our findings contribute to the understanding of the interaction between P. falciparum parasites and the infected host.  相似文献   

17.

Background

The malaria parasite Plasmodium falciparum EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains.

Methods and Findings

Five mAbs specific for F1 or F2 were generated. Three mAbs specific for F2 potently blocked binding of EBA-175 to erythrocytes, and merozoite invasion of erythrocytes (IC50 10 to 100 µg/ml IgG in growth inhibition assays). A mAb specific for F1 blocked EBA-175 binding and merozoite invasion less effectively. The difference observed between the IC50 of F1 and F2 mAbs was not due to differing association and disassociation rates as determined by surface plasmon resonance. Four of the mAbs recognized conformation-dependent epitopes within F1 or F2. Used in combination, F1 and F2 mAbs blocked the binding of native EBA-175 to erythrocytes and inhibited parasite invasion synergistically in vitro. MAb R217, the most potent, did not recognize sporozoites, 3-day hepatocyte stage parasites, nor rings, trophozoites, gametocytes, retorts, ookinetes, and oocysts but recognized 6-day hepatocyte stage parasites, and schizonts. Even though efficient at blocking binding to erythrocytes and inhibiting invasion into erythrocytes, MAb R217 did not inhibit sporozoite invasion and development in hepatocytes in vitro.

Conclusions

The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes.  相似文献   

18.

Background

The relationships between heterogeneities in host infection and infectiousness (transmission to arthropod vectors) can provide important insights for disease management. Here, we quantify heterogeneities in Leishmania infantum parasite numbers in reservoir and non-reservoir host populations, and relate this to their infectiousness during natural infection. Tissue parasite number was evaluated as a potential surrogate marker of host transmission potential.

Methods

Parasite numbers were measured by qPCR in bone marrow and ear skin biopsies of 82 dogs and 34 crab-eating foxes collected during a longitudinal study in Amazon Brazil, for which previous data was available on infectiousness (by xenodiagnosis) and severity of infection.

Results

Parasite numbers were highly aggregated both between samples and between individuals. In dogs, total parasite abundance and relative numbers in ear skin compared to bone marrow increased with the duration and severity of infection. Infectiousness to the sandfly vector was associated with high parasite numbers; parasite number in skin was the best predictor of being infectious. Crab-eating foxes, which typically present asymptomatic infection and are non-infectious, had parasite numbers comparable to those of non-infectious dogs.

Conclusions

Skin parasite number provides an indirect marker of infectiousness, and could allow targeted control particularly of highly infectious dogs.  相似文献   

19.

Introduction

Soil-transmitted helminths (STHs) are a major health concern in tropical and sub-tropical countries. Oesophagostomum infection is considered endemic to West Africa but has also been identified in Uganda, East Africa, among primates (including humans). However, the taxonomy and ecology of Oesophagostomum in Uganda have not been studied, except for in chimpanzees (Pan troglodytes), which are infected by both O. bifurcum and O. stephanostomum.

Methods and Findings

We studied Oesophagostomum in Uganda in a community of non-human primates that live in close proximity to humans. Prevalence estimates based on microscopy were lower than those based on polymerase chain reaction (PCR), indicating greater sensitivity of PCR. Prevalence varied among host species, with humans and red colobus (Procolobus rufomitratus) infected at lowest prevalence (25% and 41% by PCR, respectively), and chimpanzees, olive baboons (Papio anubis), and l''hoest monkeys (Cercopithecus lhoesti) infected at highest prevalence (100% by PCR in all three species). Phylogenetic regression showed that primates travelling further and in smaller groups are at greatest risk of infection. Molecular phylogenetic analyses revealed three cryptic clades of Oesophagostomum that were not distinguishable based on morphological characteristics of their eggs. Of these, the clade with the greatest host range had not previously been described genetically. This novel clade infects humans, as well as five other species of primates.

Conclusions

Multiple cryptic forms of Oesophagostomum circulate in the people and primates of western Uganda, and parasite clades differ in host range and cross-species transmission potential. Our results expand knowledge about human Oesophagostomum infection beyond the West African countries of Togo and Ghana, where the parasite is a known public health concern. Oesophagostomum infection in humans may be common throughout Sub-Saharan Africa, and the transmission of this neglected STH among primates, including zoonotic transmission, may vary among host communities depending on their location and ecology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号