首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Our previous studies have implicated genes mainly involved in the activity of pancreatic β cells in type 2 diabetes (T2D) susceptibility in the North Indian population. Recent literature on the role of SIRT1 as a potential master switch modulating insulin secretion and regulating gene expression in pancreatic β cells has warranted an evaluation of SIRT1 promoter region polymorphisms in the North Indian population, which is the main focus of the present study. 1542 samples (692 T2D patients and 850 controls) were sequenced for the 1.46 kb region upstream the translation start site of the SIRT1 gene. We performed a functional characterization of the SIRT1 promoter region polymorphisms using luciferase assay and observed a single-nucleotide polymorphism (SNP), rs12778366, in association with SIRT1 expression. We propose that TT, the high-expressing genotype of SNP rs12778366 in the SIRT1 promoter region and present in >80% of the North Indian population, was favored under conditions of feast-famine cycles in evolution, which has turned out to be a cause of concern in the present sedentary lifestyle under ad libitum conditions. Case-control association analysis did not implicate rs12778366 in T2DM per se in the studied population. However, our earlier reported risk genotype combinations of mt-ND3, PGC1α, and UCP2-866, when compared with the protective genotype combinations, in the background of the high-expressing TT genotype of SIRT1 SNP rs12778366, showed a very high additive risk [corrected odd ratio (OR) = 8.91; p = 6.5×10−11]. The risk level was considerably low in the genotype backgrounds of TX (OR = 6.68; p = 2.71×10−12) and CX (OR = 3.74; p = 4.0×10−3). In addition, we screened other reported T2D-associated polymorphisms: PIK3R1 rs3730089, IRS1 rs1801278, and PPP1R3 rs1799999, which did not show any significant association in North Indian population. The present paper emphasizes the importance of gene interactions in the biological pathways of T2D, a complex lifestyle disease.  相似文献   

3.

Introduction

Allergic reaction to dust mites is a relatively common condition among children, triggering cutaneous and respiratory responses that have a great impact on the health of this population. Anaphylactic hypersensitivity is characterized by an exacerbated response involving the production of regulatory cytokines responsible for stimulating the production of IgE antibodies.

Objective

To investigate an association of variants in cytokine genes (IL1A −889, IL1B −511, +3962, IL1R 1970, IL1RA 11100, IL4RA +1902, IL12 −1188, IFNG +874, TGFB1 codon 10, codon 25, TNFA −308, −238, IL2 −330, +166, IL4 −1098, −590, −33, IL6 −174, nt565, and IL10 −1082, −819, −592) between patients sensitive to dust mites and a control group.

Methods

A total of 254 patients were grouped as atopic and non-atopic according to sensitivity as evaluated by the Prick Test and to cytokine genotyping by the polymerase chain reaction-sequence specific primers (PCR-SSP) method using the Cytokine Genotyping Kit.

Results

A comparison between individuals allergic to Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Blomia tropicalis and a non-atopic control group showed significant differences between allele and genotype frequencies in the regulatory regions of cytokine genes, with important evidence for IL4 −590 in T/C (10.2% vs. 43.1%, odd ratio [OR] = 0.15, p = 5.2 10−8, pc = 0.0000011, and 95% confidence interval [95%CI] = 0.07–0.32) and T/T genotypes (42.9% vs. 13.8%, OR = 4.69, p = 2.5 10−6, pc = 0.000055, and 95%CI = 2.42–9.09). Other associations were observed in the pro-inflammatory cytokines IL1A −889 (T/T, C, and T) and IL2 −330 (G/T and T/T) and the anti-inflammatory cytokines IL4RA +1902 (A and G), IL4 −590 (T/C, T/T, C, and T), and IL10 −592 (A/A, C/A, A, and C).

Conclusion

Our results suggest a possible association between single nucleotide polymorphisms (SNPs) in cytokine genes and hypersensitivity to dust mites.  相似文献   

4.

Background

IgA nephropathy (IgAN) is a complex syndrome characterized by deposition of IgA and IgA containing immune complexes (ICs) composed of IgG and complement C3 proteins in the mesangial area of glomeruli. The low-affinity receptors for the Fc region of IgG (FcγRs) are involved in autoantibody/immune complex-induced organ injury as well as ICs clearance. The aim of the study was to associate multiple polymorphisms within FCGR gene locus with IgAN in a large Chinese cohort.

Patients and Methods

60 single nucleotide polymorphisms (SNPs) spanning a 400 kb range within FCGR gene locus were analyzed in 2100 DNA samples from patients with biopsy proven IgAN and healthy age- and sex-matched controls from the same population in Chinese.

Results

Among the 60 SNPs investigated, 15 gene polymorphisms within FCGR gene locus (25%) were associated with susceptibility to IgAN. The most significantly associated SNPs within individual genes were FCGR2B rs12118043 (p = 8.74*10−3, OR 0.76, 95% CI 0.62–0.93), and FCRLB rs4657093 (p = 2.28*10−3, OR 0.77, 95% CI 0.65–0.91). Both conditional analysis and linkage disequilibrium analysis suggested they were independent signals associated with IgAN. Associations between FCGR2B rs12118043 and proteinuria (p = 3.65×10−2) as well as gross hematuria (p = 4.53×10−2), between FCRLB rs4657093 and levels of serum creatinine (p = 2.67×10−2) as well as eGFR (p = 5.41*10−3) were also observed. Electronic cis-expression quantative trait loci analysis supported their possible functional significance, with protective genotypes correlating lower gene expressions.

Conclusion

Our data from genetic associations and expression associations revealed potentially pathogenic roles of Fc receptor gene polymorphisms in IgAN.  相似文献   

5.
6.

Background

Human strongyloidiasis varies from a chronic but limited infection in normal hosts to hyperinfection in patients treated with corticosteroids or with HTLV-1 co-infection. Regulatory T cells dampen immune responses to infections. How human strongyloidiasis is controlled and how HTLV-1 infection affects this control are not clear. We hypothesize that HTLV-1 leads to dissemination of Strongyloides stercoralis infection by augmenting regulatory T cell numbers, which in turn down regulate the immune response to the parasite.

Objective

To measure peripheral blood T regulatory cells and Strongyloides stercoralis larval antigen-specific cytokine responses in strongyloidiasis patients with or without HTLV-1 co-infection.

Methods

Peripheral blood mononuclear cells (PBMCs) were isolated from newly diagnosed strongyloidiasis patients with or without HTLV-1 co-infection. Regulatory T cells were characterized by flow cytometry using intracellular staining for CD4, CD25 and FoxP3. PBMCs were also cultured with and without Strongyloides larval antigens. Supernatants were analyzed for IL-5 production.

Results

Patients with HTLV-1 and Strongyloides co-infection had higher parasite burdens. Eosinophil counts were decreased in the HTLV-1 and Strongyloides co-infected subjects compared to strongyloidiasis-only patients (70.0 vs. 502.5 cells/mm3, p = 0.09, Mann-Whitney test). The proportion of regulatory T cells was increased in HTLV-1 positive subjects co-infected with strongyloidiasis compared to patients with only strongyloidiasis or asymptomatic HTLV-1 carriers (median = 17.9% vs. 4.3% vs. 5.9 p<0.05, One-way ANOVA). Strongyloides antigen-specific IL-5 responses were reduced in strongyloidiasis/HTLV-1 co-infected patients (5.0 vs. 187.5 pg/ml, p = 0.03, Mann-Whitney test). Reduced IL-5 responses and eosinophil counts were inversely correlated to the number of CD4+CD25+FoxP3+ cells.

Conclusions

Regulatory T cell counts are increased in patients with HTLV-1 and Strongyloides stercoralis co-infection and correlate with both low circulating eosinophil counts and reduced antigen-driven IL-5 production. These findings suggest a role for regulatory T cells in susceptibility to Strongyloides hyperinfection.  相似文献   

7.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system.  相似文献   

8.
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.  相似文献   

9.
10.
The objective of this study was to investigate the association of functional variants of the human CX3CR1 gene (Fractalkine receptor) with the risk of Amyotrophic Lateral Sclerosis (ALS), the survival and the progression rate of the disease symptoms in a Spanish ALS cohort. 187 ALS patients (142 sporadic [sALS] and 45 familial) and 378 controls were recruited. We investigated CX3CR1 V249I (rs3732379) and T280M (rs3732378) genotypes and their haplotypes as predictors of survival, the progression rate of the symptoms (as measured by ALSFRS-R and FVC decline) and the risk of suffering ALS disease. The results indicated that sALS patients with CX3CR1 249I/I or 249V/I genotypes presented a shorter survival time (42.27±4.90) than patients with 249V/V genotype (67.65±7.42; diff −25.49 months 95%CI [−42.79,−8.18]; p = 0.004; adj-p = 0.018). The survival time was shorter in sALS patients with spinal topography and CX3CR1 249I alleles (diff = −29.78 months; 95%CI [−49.42,−10.14]; p = 0.003). The same effects were also observed in the spinal sALS patients with 249I–280M haplotype (diff = −27.02 months; 95%CI [−49.57, −4.48]; p = 0.019). In the sALS group, the CX3CR1 249I variant was associated with a faster progression of the disease symptoms (OR = 2.58; 95IC% [1.32, 5.07]; p = 0.006; adj-p = 0.027). There was no evidence for association of these two CX3CR1 variants with ALS disease risk. The association evidenced herein is clinically relevant and indicates that CX3CR1 could be a disease-modifying gene in sALS. The progression rate of the disease''s symptoms and the survival time is affected in patients with one or two copies of the CX3CR1 249I allele. The CX3CR1 is the most potent ALS survival genetic factor reported to date. These results reinforce the role of the immune system in ALS pathogenesis.  相似文献   

11.
Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10−11) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10−9) resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10−9) lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.  相似文献   

12.

Background

CHI3LI encoding the inflammatory glycoprotein YKL-40 is located on chromosome 1q32.1. YKL-40 is involved in inflammatory processes and patients with Type 2 Diabetes (T2D) have elevated circulating YKL-40 levels which correlate with their level of insulin resistance. Interestingly, it has been reported that rs10399931 (−329 G/A) of CHI3LI contributes to the inter-individual plasma YKL-40 levels in patients with sarcoidosis, and that rs4950928 (−131 C/G) is a susceptibility polymorphism for asthma and a decline in lung function. We hypothesized that single nucleotide polymorphisms (SNPs) or haplotypes thereof the CHI3LI locus might influence risk of T2D. The aim of the present study was to investigate the putative association between SNPs and haplotype blocks of CHI3LI and T2D and T2D related quantitative traits.

Methods/Principal Findings

Eleven SNPs of CHI3LI were genotyped in 6514 individuals from the Inter99 cohort and 2924 individuals from the outpatient clinic at Steno Diabetes Center. In cas-control studies a total of 2345 T2D patients and 5302 individuals with a normal glucose tolerance test were examined.We found no association between rs10399931 (OR, 0.98 (CI, 0.88–1.10), p = 0.76), rs4950928 (0.98 (0.87–1.10), p = 0.68) or any of the other SNPs with T2D. Similarly, we found no significant association between any of the 11 tgSNPs and T2D related quantitative traits, all p>0.14. None of the identified haplotype blocks of CHI3LI showed any association with T2D, all p>0.16.

Conclusions/Significance

None of the examined SNPs or haplotype blocks of CHI3LI showed any association with T2D or T2D related quantitative traits. Estimates of insulin resistance and dysregulated glucose homeostasis in T2D do not seem to be accounted for by the examined variations of CHI3LI.  相似文献   

13.
Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E−04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E−08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67–3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.  相似文献   

14.
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA2 activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA2 activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA2 activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6×10−24); CELSR2/PSRC1 on chromosome 1 (p = 3×10−15); SCARB1 on chromosome 12 (p = 1×10−8) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4×10−8). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA2 mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA2 activity and mass.  相似文献   

15.
A number of genetic variants have been linked to increased risk of breast cancer. Little is, however, known about the prognostic significance of hereditary factors. Here, we investigated the frequency and prognostic significance of two ERBB4 promoter region variants, −782G>T (rs62626348) and −815A>T (rs62626347), in a cohort of 1010 breast cancer patients. The frequency of nine previously described somatic ERBB4 kinase domain mutations was also analyzed. Clinical material used in the study consisted of samples from the phase III, adjuvant, FinHer breast cancer trial involving 1010 women. Tumor DNA samples were genotyped for ERBB4 variants and somatic mutations using matrix-assisted laser desorption ionization/time of flight mass spectrometry. Paraffin-embedded tumor sections from all patients were immunohistochemically stained for ErbB4 expression. Association of ERBB4 genotype to distant disease-free survival (DDFS) was assessed using Kaplan-Meier and Cox regression analyses. Genotyping was successful for 91–93% of the 1010 samples. Frequencies observed for the ERBB4 variants were 2.5% and 1.3% for −782G>T and −815A>T, respectively. Variant −815A>T was significantly associated with poor survival (HR  = 2.86 [95% CI 1.15–6.67], P = 0.017). In contrast, variant −782G>T was associated with well-differentiated cancer (P = 0.019). Two (0.2%) ERBB4 kinase domain mutations were found, both of which have previously been shown to be functional and promote cancer cell growth in vitro. These data present the germ-line ERBB4 variant −815A>T as a novel prognostic marker in high-risk early breast cancer and indicate the presence of rare but potentially oncogenic somatic ERBB4 mutations in breast cancer.  相似文献   

16.

Background

In Northern European descended populations, genetic susceptibility for multiple sclerosis (MS) is associated with alleles of the human leukocyte antigen (HLA) Class II gene DRB1. Whether other major histocompatibility complex (MHC) genes contribute to MS susceptibility is controversial.

Methodology/Principal Findings

A case control analysis was performed using 958 single nucleotide polymorphisms (SNPs) spanning the MHC assayed in two independent datasets. The discovery dataset consisted of 1,018 cases and 1,795 controls and the replication dataset was composed of 1,343 cases and 1,379 controls. The most significantly MS-associated SNP in the discovery dataset was rs3135391, a Class II SNP known to tag the HLA-DRB1*15:01 allele, the primary MS susceptibility allele in the MHC (O.R. = 3.04, p<1×10−78). To control for the effects of the HLA-DRB1*15:01 haplotype, case control analysis was performed adjusting for this HLA-DRB1*15:01 tagging SNP. After correction for multiple comparisons (false discovery rate = .05) 52 SNPs in the Class I, II and III regions were significantly associated with MS susceptibility in both datasets using the Cochran Armitage trend test. The discovery and replication datasets were merged and subjects carrying the HLA-DRB1*15:01 tagging SNP were excluded. Association tests showed that 48 of the 52 replicated SNPs retained significant associations with MS susceptibility independently of the HLA-DRB1*15:01 as defined by the tagging SNP. 20 Class I SNPs were associated with MS susceptibility with p-values ≤1×10−8. The most significantly associated SNP was rs4959039, a SNP in the downstream un-translated region of the non-classical HLA-G gene (Odds ratio 1.59, 95% CI 1.40, 1.81, p = 8.45×10−13) and is in linkage disequilibrium with several nearby SNPs. Logistic regression modeling showed that this SNP''s contribution to MS susceptibility was independent of the Class II and Class III SNPs identified in this screen.

Conclusions

A MHC Class I locus contributes to MS susceptibility independently of the HLA-DRB1*15:01 haplotype.  相似文献   

17.
《PloS one》2013,8(6)

Objective

to explore the association between genetic markers and Oligoclonal Bands (OCB) in the Cerebro Spinal Fluid (CSF) of Italian Multiple Sclerosis patients.

Methods

We genotyped 1115 Italian patients for HLA-DRB1*15 and HLA-A*02. In a subset of 925 patients we tested association with 52 non-HLA SNPs associated with MS susceptibility and we calculated a weighted Genetic Risk Score. Finally, we performed a Genome Wide Association Study (GWAS) with OCB status on a subset of 562 patients. The best associated SNPs of the Italian GWAS were replicated in silico in Scandinavian and Belgian populations, and meta-analyzed.

Results

HLA-DRB1*15 is associated with OCB+: p = 0.03, Odds Ratio (OR) = 1.6, 95% Confidence Limits (CL) = 1.1–2.4. None of the 52 non-HLA MS susceptibility loci was associated with OCB, except one SNP (rs2546890) near IL12B gene (OR: 1.45; 1.09–1.92). The weighted Genetic Risk Score mean was significantly (p = 0.0008) higher in OCB+ (7.668) than in OCB− (7.412) patients. After meta-analysis on the three datasets (Italian, Scandinavian and Belgian) for the best associated signals resulted from the Italian GWAS, the strongest signal was a SNP (rs9320598) on chromosome 6q (p = 9.4×10−7) outside the HLA region (65 Mb).

Discussion

genetic factors predispose to the development of OCB.  相似文献   

18.
19.

Background

SNP rs5770917 located between CPT1B and CHKB, and HLA-DRB1*1501-DQB1*0602 haplotype were previously identified as susceptibility loci for narcolepsy with cataplexy. This study was conducted in order to investigate whether these genetic markers are associated with Japanese CNS hypersomnias (essential hypersomnia: EHS) other than narcolepsy with cataplexy.

Principal Findings

EHS was significantly associated with SNP rs5770917 (Pallele = 3.6×10−3; OR = 1.56; 95% c.i.: 1.12–2.15) and HLA-DRB1*1501-DQB1*0602 haplotype (P positivity = 9.2×10−11; OR = 3.97; 95% c.i.: 2.55–6.19). No interaction between the two markers (SNP rs5770917 and HLA-DRB1*1501-DQB1*0602 haplotype) was observed in EHS.

Conclusion

CPT1B, CHKB and HLA are candidates for susceptibility to CNS hypersomnias (EHS), as well as narcolepsy with cataplexy.  相似文献   

20.
Conotruncal and related heart defects (CTDs) are a group of serious and relatively common birth defects. Although both maternal and inherited genotypes are thought to play a role in the etiology of CTDs, few specific genetic risk factors have been identified. To determine whether common variants acting through the genotype of the mother (e.g. via an in utero effect) or the case are associated with CTDs, we conducted a genome-wide association study of 750 CTD case-parent triads, with follow-up analyses in 358 independent triads. Log-linear analyses were used to assess the association of CTDs with the genotypes of both the mother and case. No association achieved genomewide significance in either the discovery or combined (discovery+follow-up) samples. However, three loci with p-values suggestive of association (p<10−5) in the discovery sample had p-values <0.05 in the follow-up sample and p-values in the combined data that were lower than in the discovery sample. These included suggestive association with an inherited intergenic variant at 20p12.3 (rs6140038, combined p = 1.0×10−5) and an inherited intronic variant in KCNJ4 at 22q13.1 (rs2267386, combined p = 9.8×10−6), as well as with a maternal variant in SLC22A24 at 11q12.3 (rs11231379, combined p = 4.2×10−6). These observations suggest novel candidate loci for CTDs, including loci that appear to be associated with the risk of CTDs via the maternal genotype, but further studies are needed to confirm these associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号