首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We have isolated a Chinese hamster ovary cell mutant (DMPR-2) simultaneously resistant to diphtheria toxin and modeccin. In addition to the increased resistance to these two toxins used in the selection, this mutant is more resistant to Pseudomonas toxin and hypersensitive to ricin than the parental cell line. In contrast to the wild-type cells in which nigericin protects cells from modeccin, the cytotoxicity of modeccin in the DMPR-2 mutant is enhanced by nigericin. We have also studied the effects of nigericin and NH4Cl on the cytotoxicity of modeccin in a modeccin-resistant mutant of HeLa cells (ModRI). The cytotoxicity of modeccin is enhanced by nigericin in ModRI mutant cells, in contrast to the protection of modeccin cytotoxicity by nigericin in the parental HeLa cells. Our results suggest that modeccin can reach the cytosol of mammalian cells by two distinct routes; the major route requires endosomal acidification and the minor route is activated by nigericin.  相似文献   

2.
We have studied the cytotoxicity of ricin in cells treated with brefeldin A (BFA), which dramatically disrupts the structure of the Golgi apparatus causing Golgi content and membrane to redistribute to the ER. BFA inhibits the cytotoxicity of ricin in Chinese hamster ovary, normal rat kidney, and Vero cells and abolishes the enhancement of ricin cytotoxicity by NH4Cl, nigericin, swainsonine, and tunicamycin or by a mutation in endosomal acidification. BFA protects cells from the cytotoxicities of modeccin and Pseudomonas toxin, but has no effect on the intoxication by diphtheria toxin. Pretreatment of BFA does not protect cells from ricin treatment in the absence of BFA. Our results suggest that ricin, modeccin, and Pseudomonas toxin share a common pathway of intracellular transport from endosomes to the Golgi region where they are released into the cytosol. In contrast, the lack of protection of Vero cells from diphtheria toxin by BFA indicates that diphtheria toxin is released from acidified endosomes without involving the Golgi region.  相似文献   

3.
In attempts to assess how many molecules of the toxic lectins abrin, ricin and modeccin are needed in the cytosol to kill HeLa cells the effect of these toxins on protein synthesis and plating efficiency was studied. The incubation time of the cells after a 1 h exposure to the toxins influenced strongly the extent of inhibition of protein synthesis. The full toxic effect was expressed about 20 h of incubation after the exposure. On further incubation, protein synthesis again increased at a rate comparable to that in the control cells. After exposure to increasing concentrations of toxins the inhibition of cellular protein synthesis measured after 20 h showed excellent agreement with the inhibition of plating efficiency, indicating that the inhibition of protein synthesis can be used as a measure of cell killing. The inhibition of protein synthesis by toxins was found to follow first order kinetics, indicating that the cells are killed by an all- or none-effect. Autoradiographic studies indicated that after exposure to intermediate toxin concentrations protein synthesis was completely abolished in some cells, whereas it appeared to proceed at a normal rate in the remaining cells. The results provide evidence that penetration of one molecule of abrin, ricin or modeccin into cytosol is lethal to HeLa cells and that the efficiency of toxin entry into the cytoplasm is very low compared to the rate of bulk toxin uptake.  相似文献   

4.
The toxic lectin modeccin, which inhibits protein synthesis in eukaryotic cells, is cleaved upon treatment with 2-mercaptoethanol into two peptide chains which move in polyacrylamide gels at rates corresponding to molecular weights 28,000 and 38,000. After reduction, the toxin loses its effect on cells, while its ability to inhibit cell-free protein synthesis increases. Like abrin and ricin it inhibits protein synthesis by inactivating the 60S ribosomal subunits. Modeccin binds to surface receptors containing terminal galactose residues. Competition experiments with various glycoproteins indicate that the modeccin receptors are different from the abrin receptors. In addition, they were present on HeLa cells in much smaller numbers. Moreover, mutant lines resistant to abrin and ricin were not resistant to modeccin and vice-versa. The toxin resistance of various mutant cell lines could not be accounted for by a reduced number of binding sites on cells. The data are consistent with the view that the cells possesss different populations of binding sites with differences in ability to facilitate the uptake of the toxins and that in the resistant lines the most active receptors have been reduced or eliminated.  相似文献   

5.
Inhibition of protein synthesis in Vero cells was measured at different periods of time after treatment with diphtheria toxin and the related plant toxin modeccin. Diphtheria toxin acted much more rapidly than modeccin. Cells were protected against both toxins with antiserum as well as with agents like NH4Cl, procaine, and the ionophores monensin, FCCP, and CCCP, which increase the pH of intracellular vesicles. Antiserum, which is supposed to inactivate toxin only at the cell surface, protected only when it was added within a short period of time after modeccin. Compounds that increase the pH of intracellular vesicles, protected even when added after 2 h, indicating that modeccin remains inside vesicles for a considerable period of time before it enters the cytosol. After addition of diphtheria toxin to the cells, compounds that increase the pH of intracellular vesicles protected only approximately to the same extent as antitoxin. This indicates that after endocytosis diphtheria toxin rapidly enters the cytosol. At 20 degrees C, the cells were more strongly protected against modeccin than against diphtheria toxin. The residual toxic effect of diphtheria toxin at 20 degrees C could be blocked with NH4Cl whereas this was not the case with modeccin. This indicates that at 20 degrees C the uptake of diphtheria toxin occurs by the normal route, whereas the uptake of modeccin occurs by a less efficient route than that dominating at 37 degrees C. The results indicate that after endocytosis diphtheria toxin rapidly enters the cytosol from early endosomes with low pH (receptosomes). Modeccin enters the cytosol much more slowly, possibly after fusion of the endocytic vesicles with another compartment.  相似文献   

6.
Immunotoxins comprised of a monoclonal antibody covalently coupled to recombinant ricin A chain or to a binding-defective form of diphtheria toxin were compared with respect to their rates of protein synthesis inhibition and efficiencies of killing target cells. Protein synthesis inhibition rates were established by measuring the incorporation of L-[14C]leucine in toxin-treated cells relative to untreated cells at several times after exposure of cells to an immunotoxin. Cell killing was assessed by a limiting dilution assay which measures the number of cells surviving toxin treatment relative to untreated cells. At equivalent protein concentrations, the diphtheria toxin immunotoxin inhibited protein synthesis significantly more rapidly than the ricin A immunotoxin but, contrary to previous predictions, achieved a significantly lower cell kill. Thus, the kinetics of protein synthesis inactivation do not necessarily correlate with killing efficiencies. Possible explanations for these results are that the effect of the diphtheria toxin immunotoxin on protein synthesis is partially reversible or that the diphtheria toxin immunotoxin enters the cytosol at a faster rate than the ricin A immunotoxin but also is degraded at a faster rate.  相似文献   

7.
The effects of retinoic acid and 12-O-tetradecanoylphorbol 13-acetate on the sensitivities of a number of cell lines to the toxins modeccin, abrin, ricin and diphtheria toxin were studied. Retinoic acid and some other retinoids were found to protect a number of the cell lines against the toxins. HeLa cells that were protected bound much more retinoic acid than L-cells that were not protected. The tumour promoter 12-O-tetradecanoylphorbol 13-acetate was found to increase the sensitivity of cells to abrin, ricin and modeccin in the absence as well as in the presence of retinoic acid. Neither retinoic acid nor 12-O-tetradecanoylphorbol 13-acetate affected the extent of binding and pinocytotic uptake of toxins by the cells. Apparently retinoic acid and 12-O-tetradecanoylphorbol 13-acetate interfere with the entry of the toxins through the cell membrane.  相似文献   

8.
Temporal separation of protein toxin translocation from processing events   总被引:4,自引:0,他引:4  
Intoxication of Vero cells by ricin, modeccin, diphtheria toxin (DT), and Pseudomonas exotoxin A requires: 1) binding to cell surface receptors; 2) transport to the cytoplasm; and 3) enzymatic inactivation of a component of the protein synthetic machinery. The kinetic profiles of all four toxins consist of a lag followed by the apparent first-order decrease in protein synthesis. Autoradiographic analysis of DT-intoxicated cell populations has demonstrated that two subpopulations of cells exist during the period of decreasing protein synthesis: one population synthesizing at control levels and the other synthesizing little or no protein (Hudson, T. H., and Neville, D. M., Jr. (1985) J. Biol. Chem. 260, 2675-2680). The present study correlates the autoradiographic data with the rates of protein synthesis decline in cells intoxicated with modeccin, ricin, Pseudomonas exotoxin A, as well DT. In all cases, the first time point which exhibits a decrease in protein synthetic activity also exhibits two subpopulations of cells, one synthesizing protein at control rates and the other synthesizing little or no protein. As the intoxication progresses, cells leave the control population by the rapid cessation of all protein synthesis. These experiments demonstrate that transport of all four toxins to the cytosol is the rate-limiting step during the pseudo first-order decline in protein synthesis. Furthermore, the final step in the transport process (translocation) must result in the release to the cytoplasm of a quantity of toxin sufficient to rapidly inactivate all protein synthesis in that cell. The probability of a translocation event occurring in any cell of the population is established during the lag and remains constant throughout the first-order decrease in protein synthesis. The requirement for acidification during the intoxication by DT, Pseudomonas exotoxin A, or modeccin is restricted to the lag period. Acidification is therefore necessary to establish the probability of translocation, but it is not directly involved in the actual translocation of these toxins. The pseudo first-order passage of DT intoxications through antitoxin and NH4Cl- or monensin-sensitive stages are shown to have the same cellular basis as the pseudo first-order decrease in protein synthesis. A kinetic model is presented which defines the DT intoxication process from one of its earliest events (endocytosis) to its penultimate event (translocation of toxin to the cytosol).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Diphtheria toxin entry into cells is facilitated by low pH   总被引:18,自引:13,他引:5       下载免费PDF全文
At neutral pH, NH4Cl and chloroquine protected cells against diphtheria toxin. A brief exposure of the cells to low pH (4.5-5.5) at 37 degrees completely abolished this protection. When, to cells preincubated with diphtheria toxin and NH4Cl, neutralizing amounts of anti-diphtheria toxin were added before the pH was lowered, the toxic effect was considerably reduced, but it was not completely abolished. A much stronger toxic effect was seen when antibodies were added immediately after incubation at low pH. Upon a short incubation with diphtheria toxin at low pH, the rate of protein synthesis in the cells decreased much faster than when the normal pH was maintained. The data suggest that, at low pH, diphtheria toxin (or its A fragment) penetrates directly through the surface membrane of the cell. The possibility is discussed that, when the medium has a neutral pH, the entry of diphtheria toxin involves adsorptive endocytosis and reduction of the pH in the vesicles possibly by fusion with lysosomes. Low pH did not facilitate the entry of the closely related toxins abrin, ricin, and modeccin.  相似文献   

10.
A hybrid protein of ricin and the enzymatically active fragment A of diphtheria toxin (toxin A) has been synthesized and purified. The diphtheria toxin A fragment of the hybrid protein is shown to enter the cytosol compartment of HeLa cells, its presence assayed by the fall of intracellular elongation factor II (EF-2) and the rise of ADP-ribosylated EF-2. Hybrid entrance to HeLa cells is blocked by lactose which blocks receptor-mediated entry of ricin but not by NH4Cl which blocks the transport of diphtheria toxin. It is concluded that the diphtheria toxin fragment A moiety of the hybrid enters the cell cytosol via the ricin receptor-mediated transport system. The kinetics of intracellular ADP-ribosylation of EF-2 by diphtheria toxin have also been studied. Ribosylation is preceded by a toxin dose-dependent lag period. The data suggest that the time constant responsible for the lag period is in the transport step. Models consistent with these data are discussed.  相似文献   

11.
In the present study, we compared the abilities of ricin and diphtheria toxin to induce apoptosis in Vero cells. The cytolysis and DNA fragmentation by ricin paralleled its protein synthesis inhibitory activity. However, unlike ricin, diphtheria toxin could induce neither cytolysis nor DNA fragmentation in Vero cells up to very high concentration, in spite of the fact that Vero cells were even more sensitive to protein synthesis inhibition by diphtheria toxin than ricin. Interestingly, coexistence of brefeldin A (BFA) and okadaic acid (OA) significantly enhanced diphtheria toxin-mediated cytolysis and DNA fragmentation without affecting the activity of protein synthesis inhibition. Ammonium chloride almost completely abolished the ability of diphtheria toxin to induce apoptosis in the presence of BFA and OA as well as the protein synthesis inhibitory activity. The mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2), failed to induce apoptosis in Vero cells even in the presence of BFA and OA. Thus, translocation of diphtheria toxin into the cytosol and subsequent enzymatic inactivation of EF-2 may be necessary steps to induce apoptosis. Taken together our results suggest that protein synthesis inhibition by toxins is not sufficient to induce apoptosis, and underlying mechanisms of apoptosis induction may be distinct between ricin and diphtheria toxin. Since a morphological change in the Golgi complex was observed in Vero cells treated with BFA and OA, modulation of the Golgi complex by these reagents may be partly responsible for enhanced apoptosis induction by diphtheria toxin.  相似文献   

12.
Ammonium chloride and chloroquine protected a variety of cell lines against diphtheria toxin and the toxic lectin modeccin. Experiments where the ability of antibody to neutralize the toxin was measured indicate that in the presence of ammonium chloride and chloroquine, modeccin remains at the cell surface and that the two compounds inhibit the uptake of modeccin into the cytoplasm. A cell line tolerating increased concentrations of modeccin was not protected against modeccin by ammonium chloride or chloroquine, whereas the compounds did protect these cells against diphtheria toxin.  相似文献   

13.
Nigericin and monensin, ionophores for Na+ and K+, have been found to enhance the cytotoxicities of abrin, ricin, and Pseudomonas aeruginosa exotoxin A in Chinese hamster ovary (CHO) cells. They do not affect the cytotoxicity of diphtheria toxin in the same cell line. Maximal sensitization of the CHO cells toward ricin and Pseudomonas toxin requires preculture of CHO cells in the presence of nigericin. Inhibition of protein synthesis in CHO cells by ricin or Pseudomonas toxin is also enhanced by preculture of CHO cells in the presence of nigericin. These results suggest a common step in the intoxication process of ricin and Pseudomonas toxin, the rate of which is facilitated by pretreatment with nigericin. This step is, however, not shared by the intoxication of CHO cells with diphtheria toxin.  相似文献   

14.
Inhibitors of energy metabolism, 2-deoxyglucose and cyanide were shown to inhibit NKCF-mediated lysis of L929 target cells at the same molar concentrations that effectively inhibited cellular ATP levels and the toxic effects of pseudomonas toxin A. In addition, inhibitors of receptor-mediated endocytosis, cytochalasin B, a microtubule disrupter, and trifluoperazine, an inhibitor of clathrin-coat formation, inhibited NKCF-mediated lysis and expression of pseudomonas toxin activity, but had little effect upon cellular ATP. Lysomotropic agents chloroquine, ammonium chloride, and dansylcadavarine also inhibited both NKCF-mediated lysis and pseudomonas toxin activity. These results are similar to those involving diphtheria toxin and the plant toxins abrin, modeccin, and ricin, whose mode of action involves inhibition of protein synthesis following receptor-mediated endocytosis. However, it was determined that NKCF did not cause a decrease in the rate of protein synthesis up to the time of cell death. These results suggest that active target cell processes (possibly involving receptor-mediated endocytosis of NKCF) must occur for target cell lysis to be completed.  相似文献   

15.
Modeccin is shown to strongly inhibit the ability of HeLa cells to form colonies in vitro. In modeccin treated cells the rate of incorporation of labelled leucine was reduced earlier than that of uridine and thymidine, and the toxin also inhibited protein synthesis in a cell-free system from rabbit reticulocytes. When modeccin was added to human erythrocytes agglutination was induced upon subsequent addition of anti-modeccin indicating that the toxin binds to cell surfaces. This effect was strongly increased after neuraminidase treatment of the cells. Furthermore, neuraminidase treatment of HeLa cells strongly increased their sensitivity to modeccin. The data indicate that modeccin acts by binding to cell surfaces and then somehow interferes with protein synthesis.  相似文献   

16.
The inhibitory effect of ricin, abrin, and modeccin on protein synthesis by a rabbit reticulocyte lysate is enhanced after preincubation of the toxins with GSH in the presence of a thiol:protein disulfide oxidoreductase purified from bovine liver. The same toxins, as well as the toxin from Viscum album, are reduced also by another thiol:protein disulfide oxidoreductase purified from rat liver cytosol.  相似文献   

17.
Ehrlich ascites tumor cells were found to be very insensitive to diphtheria toxin. We formed 37 hybrids from Ehrlich tumor cells and diphtheria toxin-sensitive human fibroblasts. The effects of diphtheria toxin on protein synthesis in those hybrids were examined. The hybrids were divided into three groups on the basis of toxin sensitivity. Group A hybrids were as sensitive to diphtheria toxin as human fibroblasts, Group C were as resistant as Ehrlich tumor cells, and Group B had intermediate sensitivity. Group A hybrids had diphtheria toxin-binding sites but Group B and C had no detectable binding sites. Elongation factor-2 of all the hybrids was susceptible to ADP-ribosylation by fragment A of diphtheria toxin. Cells of Group A and B became more sensitive to CRM 45 (cross-reacting material 45 of diphtheria toxin) after they were exposed to low pH (pH = 4.5). The resistance of Group C to CRM 45 was not affected by the same treatment. Group A and B hybrids and human fibroblasts had similar sensitivities to a hybrid toxin composed of wheat germ agglutinin and fragment A of diphtheria toxin, but Group C and Ehrlich tumor cells were resistant to this hybrid toxin. All the hybrids and Ehrlich tumor cells were more sensitive to a hybrid toxin composed of wheat germ agglutinin and subunit A of ricin than were human fibroblasts. On subcloning of Group B hybrids, one Group C hybrid was obtained, but no Group A hybrid. These facts suggest that Ehrlich ascites tumor cells differ from human fibroblasts in the expression of a factor(s) that is involved in entry of fragment A of diphtheria toxin into the cytoplasm after the toxin binds to its surface receptors.  相似文献   

18.
Immunotoxins are presently being evaluated as novel agents for cancer therapy. The direct mechanism by which immunotoxins kill cancer cells is inhibition of protein synthesis, but cytotoxicity due to induction of apoptosis has also been observed with these agents. Some cancers that express high levels of BCL-2 are relatively resistant to apoptosis inducing agents. It is therefore important to determine to what degree the toxicity of ricin, diphtheria toxin, Pseudomonas exotoxin and Pseudomonas exotoxin derived immunotoxins towards cancer cells can be attributed to inhibition of protein synthesis, and to what degree to subsequent induction of apoptosis. We compared the sensitivity of MCF-7 breast cancer cells that were stably transfected with a BCL-2 expression plasmid and thus protected against apoptosis and of MCF-7 cells transfected with a control plasmid towards ricin, diphtheria and Pseudomonas toxin, a Pseudomonas toxin-derived immunotoxin (LMB-7) and tumour necrosis factor (TNF). We found that BCL-2 mediated inhibition of apoptosis renders the cells almost completely resistant (1000-fold) to tumour necrosis factor, but the same cells were only 3–10 fold more resistant to cytotoxicity induced by immunotoxin LMB-7 as well as Pseudo-monas exotoxin, diphtheria toxin and ricin. We next studied several leukaemia cell lines with variable levels of BCL-2 expression and found them quite sensitive to a Pseudomonas exotoxin containing immunotoxin independent of the level of BCL-2. Our data indicate that although BCL-2 overexpression can have a modest effect on sensitivity to an immunotoxin, cell lines derived from patients are still very sensitive to immunotoxins.  相似文献   

19.
We have studied the effect of several structurally related mansonones on the cytotoxicity of plant and bacterial toxins in Vero and BER-40, a brefeldin A-resistant mutant of Vero cells. Mansonone-D (MD), a sesquiterpenoid ortho-naphthoquinone, inhibited the cytotoxicity of ricin, modeccin, Pseudomonas toxin, and diphtheria toxin in Vero cells to different extents. The inhibition of ricin cytotoxicity was dose dependent and reversed upon removal of the drug. Protection of ricin cytotoxicity was also observed in the presence of cycloheximide, indicating that de novo protein synthesis is not required for the protective effect. Although MD inhibited the degradation and excretion of ricin, the binding and internalization of ricin was not affected. In contrast, MD strongly reduced the specific binding of diphtheria toxin in Vero cells. Fluorescence microscopic studies show that MD treatment dramatically alters the morphology of the Golgi apparatus in Vero cells. The kinetic studies reveal that the protection of ricin cytotoxicity is the consequence of decreased toxin translocation to the cytosol in MD-treated cells. The reactive ortho-quinone moiety of MD is important for the protective effect as thespesone, a para-naphthoquinone with a heterocyclic ring structure identical to that of MD, did not inhibit the cytotoxicity of toxins. Thespone, a dehydromansonone-D, lacking two hydrogens from the heterocyclic dihydrofuran ring of MD, inhibited the cytotoxicity of ricin, but was albeit less potent than MD. Neither mansonone-E nor mansonone-H with reactive ortho-quinone moiety, but with a different heterocyclic structure, had any effect on the cytotoxicity of ricin indicating that the protective effect of MD is specifically related to the overall structure of the metabolite. J. Cell. Physiol. 176:40–49, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    20.
    Hybrid molecules were prepared from the A- and B-chains of the two toxic lectins ricin and modeccin by dialyzing mixtures of isolated chains to allow a disulfide bridge to be formed between them. Whereas the hybrid consisting of ricin A-chain and modeccin B-chain was non-toxic, the converse hybrid, modeccin A-chain/ricin B-chain, was even more toxic to Vero cells than were the parent toxins, native ricin and modeccin. A number of drugs (NH4Cl, monensin, trifluoperazine, verapamil, ionophore A23187) which protect cells against modeccin, but not against ricin, protected to some extent against the toxic hybrid, but less so than against native modeccin. The possibility is discussed that the modeccin A-chain of the hybrid may enter the cytosol by two routes, one which is highly efficient and identical to that used by native modeccin and another less efficient one which cannot be used by native modeccin.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号