首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为研究冬眠季节的光照条件对贮脂类冬眠动物入眠的影响,在达乌尔黄鼠腹腔埋植体温记录元件i Button,在体重高峰后的下降阶段置于5℃和12L∶12D的光照条件下,观察测定其冬眠模式和能量消耗。达乌尔黄鼠冬眠模式出现深冬眠型、少冬眠型和不冬眠型,蛰眠阵包括深冬眠阵、短冬眠阵和日眠阵。不同冬眠阵中最低体温、冬眠阵的持续时间、阵间产热的持续时间、冷却速率和复温速率差异显著;阵间产热的最高体温基本相同。平均每日能量消耗在日眠阵中最高、短冬眠阵中居中、深冬眠阵中最低。入眠时间多集中于黑暗时相,觉醒时间多集中于光照时相。本研究结果提示,在冬眠季节施加光照黑暗循环条件可减少达乌尔黄鼠冬眠的时间,升高阵间最低体温,缩短冬眠阵与阵间产热的持续时间,降低复温速率;增加冬眠期间能量消耗。入眠与觉醒受光照条件影响,具有明显的光暗节律。  相似文献   

2.
冬眠阵过程中黄鼠脑与血浆阿片肽含量的变化   总被引:2,自引:0,他引:2  
叶祖承  蔡益鹏 《生理学报》1995,47(6):610-614
利用放射免疫测定法,观测了自然冬眠阵过程的常温、入眠、深眠、激醒四个阶段中,达乌尔黄鼠不同脑区及血浆中β-内啡肽(β-EP)与甲啡肽(MEK)的含量。结果表明:黄鼠下丘脑、垂体中的β-内啡肽在入眠过程中增多,在深眠状态下的含量又高于入眠期;海马、血浆中的β-内啡肽含量变动趋势正好相反,在入眠期与深眠期低于常温水平;桥延脑中含量在冬眠阵过程中变化不大。甲啡肽含量在入眠期升高,而在深眠期重新下降,不同  相似文献   

3.
探讨了达乌尔黄鼠在冷暴露、冬眠及激醒时的外周甲状腺激素水平变化和激素代谢。达乌尔黄鼠在非冬眠季节 ( 7~ 8月 )冷暴露 ( 4℃± 2℃ ) 1天 ,导致血清T3和T4浓度迅速增加 ,T3/T4不变 ;经 4周冷驯化后 ,T3维持在高水平上 ,T4降低 ,T3/T4增加 ,外周组织中的T4脱碘酶活性升高。表明冬眠动物与非冬眠动物的甲状腺机能及其激素代谢的冷适应性调节一致。在冬眠季 ( 12~ 1月 )的冬眠和激醒过程中 ,外周组织的T4脱碘酶活性、血清T3和T4水平比常温达乌尔黄鼠的高 ,显著高于夏季的水平 ,T3/T4不变。表明达乌尔黄鼠甲状腺机能及其激素水平存在季节性变化。  相似文献   

4.
达乌尔黄鼠冬眠阵过程中感觉兴奋性的变化   总被引:1,自引:1,他引:0  
吴宇英  蔡益鹏 《兽类学报》1992,12(4):287-293
对冬眠阵中的达乌尔黄鼠施加皮肤电刺激,以心率和体温的变化作指标,发现冬眠黄鼠有3种类型的兴奋反应。本实验还发现诱发兴奋性反应的刺激强度在冬眠阵后期有明显的下降趋势,说明随冬眠阵进行达乌尔黄鼠的感觉兴奋性是逐步升高的,即具有“累进的应激性”现象。  相似文献   

5.
冬眠是动物应对冬季低温和食物匮乏的一种生存策略。达乌尔黄鼠 (Spermophilus dauricus) 是典型的贮脂类冬眠动物。为研究冬眠动物肾脏的适应机制,本实验采用组织学、血液生化分析及酶联免疫方法检测了夏季活动期 (7月) 、冬眠期 (12月) 和早春出眠后 (3月) 达乌尔黄鼠肾单位形态学及血清肌酐、尿素和抗利尿激素 (ADH) 的变化,并用qPCR方法检测了肾脏水通道蛋白基因 (AQP1AQP2AQP3)、ADH受体 (V2R) 及内皮型一氧化氮合酶基因 (eNOS) 的表达。结果发现,冬眠期和早春出眠期的达乌尔黄鼠肾小球密度、近曲小管和远曲小管的相对管径、皮质部近曲小管数与远曲小管数比值均低于夏季活动期;冬眠期血清肌酐和尿素浓度高于夏季活动期和早春出眠期,ADH浓度及其受体V2R基因表达低于夏季活动期;冬眠期AQP1基因表达高于早春出眠期,AQP3基因表达低于夏季活动期,AQP2基因表达无显著差异;冬眠期eNOS基因表达低于早春出眠期。这些结果表明冬眠的达乌尔黄鼠表现出较低的肾功能;不同时期的水通道蛋白,eNOS及ADH表现出适应性的功能调节。该实验结果丰富了对冬眠动物肾脏适应机制的认识。  相似文献   

6.
达乌尔黄鼠实验室饲养、繁殖及其冬眠阵   总被引:1,自引:0,他引:1  
为探索实验室条件下达乌尔黄鼠饲养与繁殖的方法及冬眠阵的发生规律,参照野生黄鼠冬眠洞穴的主要生态环境参数,建立人工冬眠屋,采用传统锯末技术记录冬眠阵.结果显示:(1)处于春季繁殖期的黄鼠应以大鼠饲料为主,辅以少量黄瓜等,夏季活跃期交叉饲喂大鼠饲料与兔饲料,辅以多水的瓜果蔬菜,秋季育肥期以大鼠饲料为主,辅以高脂肪高蛋白的花生、豆类等.(2)雌鼠怀孕期为28 d左右,哺乳期约一个月,雌鼠每窝产仔4~8只,平均5.52只;初生幼鼠两周内忌换垫料,并避免将异味带入鼠房.(3)黄鼠冬眠期从当年11月下旬至次年3月上旬,平均93.95 d;冬眠阵睡眠时长平均7.44d,阵间激醒时长平均1.36 d,睡眠天数占整个冬眠期的89.9%;整个冬眠期,黄鼠冬眠阵平均7.55个.(4) 2009年秋至2011年春季,自野外共捕回黄鼠185只,存活146只,存活率78.9%.在2006、2009和2011年的黄鼠繁殖期,共配对25对,产仔138只,成活92只,成活率为66.7%.结果表明,野生达乌尔黄鼠可在人工饲养条件下实现繁殖,并可在人工冬眠屋成功冬眠.  相似文献   

7.
季节、环境温度与黄鼠冬眠的关系   总被引:4,自引:0,他引:4  
金宗濂  蔡益鹏 《生态学报》1987,7(2):185-192
观察了达乌尔黄鼠在实验室内冬眠的一般情况。常温黄鼠的体温有着规律性的年周期,与环境温度的年周期变动不完全呈依从关系。出眠初期(4月下旬),动物体温高而稳定。4月至6月常温黄鼠的平均体温(皮温)为35.6℃,波动菹围32—37.5℃。随着体重达到顶峰,体温逐渐降低。8月份部分黄鼠出现低于32℃的低常体温,表明部分黄鼠自8月盛夏开始冬眠。但就整个种群而言,北京地区实验室内黄鼠冬眠季自9月下半月开始。3月底止,共6.5个月。秋季室温下降,动物入眠趋势增长。浅低体温(31.9—15℃)的比数逐渐升高。9月至12月,低体温(低于31.9℃)的百分比从47%增至84.8%,反映了动物从浅冬眠向深冬眠过渡。1月至2月份,低体温占85%以上,深低体温(低于15℃)占绝对优势。标志着动物种群的深眠月份。秋季动物从常温期向冬眠期转化的界线是不清的,而春季从冬眠期向常温相转化的界限却比较明显。  相似文献   

8.
毛敏  杨明  刘新宇 《兽类学报》2022,42(4):420-431
冬眠哺乳动物的肠道微生物会发生季节性变化,同时在冬眠期间动物处于禁食状态,对肠道微生物的多样性和组成也产生影响。本研究通过16S rRNA基因高通量测序分析达乌尔黄鼠育肥阶段 (起始育肥期、快速育肥期、育肥完成期) 和冬眠阶段 (冬眠早期、冬眠晚期、出眠期) 共6个时期盲肠菌群的多样性、组成和功能,并通过冗余分析 (RDA) 探究其生理特征与菌群组成和功能之间的关系,揭示达乌尔黄鼠盲肠菌群的季节性变化。菌群组成的分析显示达乌尔黄鼠盲肠菌群主要由厚壁菌门 (Firmicutes)、拟杆菌门 (Bacteroidetes) 和疣微菌门 (Verrucomicrobia) 组成。与其他时期相比,冬眠早期厚壁菌门的相对丰度减少,拟杆菌门和疣微菌门的相对丰度增加。在Alpha多样性中,起始育肥期、快速育肥期和冬眠早期的Chao1和ACE指数显著低于出眠期,育肥完成期的Simpson指数显著低于快速育肥期 (P < 0.05) 。通过加权和非加权的UniFrac距离矩阵的主坐标分析发现盲肠菌群均显示出了明显的季节性聚类。PICRUSt分析中,丁酸代谢等代谢通路在育肥阶段富集,冬眠阶段集中在氮代谢等相关通路中。RDA分析显示达乌尔黄鼠不同时期的生理特征与其盲肠菌群的组成和功能显著相关。本研究表明,冬眠使达乌尔黄鼠盲肠菌群的多样性和相对丰度发生改变,盲肠菌群组成和功能的变化调节了达乌尔黄鼠的生理代谢,使达乌尔黄鼠适应季节性的环境变化。  相似文献   

9.
比较了不同季节和冬眠时相中达乌尔黄鼠 (Citelleusdauricus)下丘脑内去甲肾上腺素 (noradrenaline ,NA)代谢和视前区 (POA)脑片中各类温敏神经元的比例、温度敏感性、放电活动的临界温度及下限温度 .结果表明 :与夏季动物相比 ,( 1)冬眠各时相中POA温敏神经元的比例和温敏性产生了与冬眠体温调节特性相关的适应性改变 ;( 2 )冬季和冬眠中POA神经元放电的下限温度和温敏神经元活动的临界温度均显著下移 ;( 3 )冬眠中POA神经元对NA反应的敏感性增高 ,冷敏神经元对NA的反应从夏季的抑制型转变为冬眠时的兴奋型 ;( 4)入眠和深冬眠时下丘脑内NA的含量和代谢水平下降 ,出眠时代谢水平升高 .这些变化可能解释动物入眠时主动降低体温和出眠时从深低体温中快速地升温的温度调节机理 .  相似文献   

10.
达乌尔黄鼠心肌细胞膜电位的耐寒性   总被引:2,自引:0,他引:2  
用胞内微电极记录达乌尔黄鼠心室乳头肌细胞膜电位,研究它的耐寒性并附带观察季节及冬眠的影响。76%和55%的心肌标本分别在0℃至—5℃之间可诱发动作电位。3例心肌超冷至-5℃时静息电位(RP)66.6mV,为35℃时的80%,动作电位幅值(APA)60.4mV,为66%,但复温后可完全恢复。RP与APA比最大去极化率(dV/dt_(max))和动作电位时程(ADP)对寒冷有较大的抵抗力。季节对心肌膜电位活动有明显的影响,冬季深眠黄鼠的心肌RP和APA在0℃中显著高于冬季活跃组,提示深眠黄鼠的心肌有较大的耐寒性。这些结果说明冬眠型哺乳动物的心肌细胞膜电位比非冬眠型的有显著较大耐寒性。  相似文献   

11.
A. R. French 《Oecologia》1990,82(1):93-96
Summary Age-related differences in the patterns of body temperature regulation during hibernation were found in yellow-bellied marmots. The timing of all entrances into and arousals from torpor was determined from continuous records of thermocouples mounted in each animal's nest box. Older marmots spent more time at high body temperatures following periodic arousals from torpor than did juveniles undergoing their first season of hibernation. In addition, older marmots spontaneously terminated their hibernation seasons in the spring, whereas most juveniles continued to hibernate until either they were emaciated from starvation or they were fed. These two patterns of hibernation reflect age- and size-related differences in the degree to which the animals are constrained energetically and the probability that they can successfully reproduce in spring. The patterns also are consistent with age-related differences in the timing of dormancy in nature.  相似文献   

12.
Golden-mantled ground squirrels (Spermophilus lateralis) are herbivores that hibernate during winter. Although little is known about the nutritional/physiological constraints on hibernation, numerous studies have demonstrated that increasing the amount of linoleic acid (a polyunsaturated fatty acid) in the diet enhances hibernation. This is probably because high linoleic acid diets reduce the melting points of the depot fats produced for hibernation which makes them more metabolizable at low body temperatures. This suggests that a major limitation on hibernation may be obtaining enough linoleic acid in the diet for proper hibernation. In all previous studies, however, the amount of linoleic acid in the diets of free-ranging animals was either not considered, or the range of dietary linoleic acid contents in the experiments was less than that of natural diets. It is thus not known whether the amount of linoleic acid available to hibernators under natural conditions actually limits their torpor patterns. A series of laboratory feeding and hibernation experiments were conducted with S. lateralis and artificial diets with different linoleic acid contents that were either below or above the linoleic acid content of the natural diet. The results demonstrated that when dietary linoleic acid contents are either below or above natural levels, hibernation ability is greatly reduced. Hibernation ability was reduced when the squirrels were maintained on a high linoleic acid diet probably by the production of toxic lipid peroxides in brown adipose tissues. The results indicate that there is an optimal level of dietary linoleic acid for proper hibernation, and this is equal to that of the natural diet. The amount of linoleic acid available in the diet thus does not limit hibernation under normal natural conditions.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid - PUFA polyunsaturated fatty acid - T a ambient temperature - T b body temperature - WAT white adipose tissue  相似文献   

13.
扬子鳄(Alligator sinensis),属于我国Ⅰ级重点保护野生动物,华北地区养殖条件下未见降温冬眠报道.本次于2020年11月至2021年5月对北京动物园饲养的5尾扬子鳄开展人工降温冬眠实验,观察冬眠各期个体的环境选择和行为变化,建立冬眠期间的行为谱,分析冬眠前后行为指标和形态指标(全长、体重和围度)变化,监...  相似文献   

14.
Hibernation and daily torpor involve substantial decreases in body temperature and metabolic rate, allowing birds and mammals to cope with cold environments and/or limited food. Regulated suppression of mitochondrial metabolism probably contributes to energy savings: state 3 (phosphorylating) respiration is lower in liver mitochondria isolated from mammals in hibernation or daily torpor compared to normothermic controls, although data on state 4 (non-phosphorylating) respiration are equivocal. However, no suppression is seen in skeletal muscle, and there is little reliable data from other tissues. In both daily torpor and hibernation, liver state 3 substrate oxidation is suppressed, especially upstream of electron transport chain complex IV. In hibernation respiratory suppression is reversed quickly in arousal even when body temperature is very low, implying acute regulatory mechanisms, such as oxaloacetate inhibition of succinate dehydrogenase. Respiratory suppression depends on in vitro assay temperature (no suppression is evident below ~30 degrees C) and (at least in hibernation) dietary polyunsaturated fats, suggesting effects on inner mitochondrial membrane phospholipids. Proton leakiness of the inner mitochondrial membrane does not change in hibernation, but this also depends on dietary polyunsaturates. In contrast proton leak increases in daily torpor, perhaps limiting reactive oxygen species production.  相似文献   

15.
目的应用5-羟色胺(5-HT)、生长抑素(SS)、胃泌素(GAS)、胰高血糖素(Glu)、胰多肽(PP)和P-物质(SP)6种特异性抗血清,对黑龙江林蛙冬眠期和非冬眠期消化道内分泌细胞进行检测。方法应用卵白素-生物素-过氧化物酶复合物(avidin-biotin-peroxidase complex,ABC)免疫组织化学法。结果在冬眠期和非冬眠期黑龙江林蛙消化道内检测到5-HT细胞、SS细胞和Glu细胞,而GAS细胞、PP细胞和SP细胞均未检测到。5-HT细胞分布广泛,存在于黑龙江林蛙冬眠期和非冬眠期从食管到直肠的整个消化道中,在冬眠期分布密度高峰为胃幽门部和十二指肠,而非冬眠期则为胃幽门部;SS细胞分布也较为广泛,在黑龙江林蛙冬眠期和非冬眠期消化道中,除了直肠以外,均有分布,且这两个时期SS细胞的分布密度高峰均在胃幽门部。Glu细胞在冬眠期仅在胃贲门部、胃体、空肠和回肠检测到,而在非冬眠期除以上四个部位外直肠部也检测到了Glu细胞,并且Glu细胞分布密度高峰都在胃体部。结论黑龙江林蛙在冬眠期和非冬眠期消化道中内分泌细胞分布型的不同,可能与机体适应不同时期的生理功能有关。  相似文献   

16.
The digestive tract is the largest endocrine organ in the body; the distribution pattern of endocrine cells varies with different pathological and physiological states. The aim of the present study was to investigate the distributed density of 5-hydroxytryptamine (5-HT), gastrin (GAS), somatostatin (SS) and vasoactive intestinal peptide (VIP) immunoreactive (IR) cells in the digestive tract of Alligator sinensis during the active and hibernating period by immunohistochemical (IHC) method. The results indicated that 5-HT-IR cells were distributed throughout the entire digestive tract, which were most predominant in duodenum and jejunum. The density increased significantly in stomach and duodenum during hibernation. GAS-IR cells were limited in small stomach and small intestine. The density decreased significantly in small stomach during hibernation, while increased in duodenum. What's more, most of the endocrine cells in duodenum were generally spindle shaped with long cytoplasmic processes ending in the lumen during hibernation. SS-IR cells were limited in stomach and small stomach. The density increased in stomach while decreased in small stomach during hibernation, meanwhile, fewer IR cells occurred in small intestine. VIP-IR cells occurred in stomach and small stomach. The density decreased in small stomach, while increased in stomach during hibernation. These results indicated that the endocrine cells in different parts of digestive tract varied differently during hibernation, their changes were adaptive response to the hibernation.  相似文献   

17.
The edible dormouse (Glis glis) is a small rodent and an obligate hibernator. Dormice undergo strong fluctuations of reproductive output during years that seem to be timed to coincide with future food supply. This behaviour enables them to avoid producing young that will starve with a high probability due to food shortage, and to increase their lifetime reproductive success. Aims of this study were to elucidate the extent to which feeding ecology in the edible dormouse has an impact on body mass and the fatty acid (FA) pattern of the white adipose tissue (WAT) before and after hibernation, which in turn might influence reproductive status in spring. Dormice show strong seasonal fluctuations of the body mass, which is reduced by one third during hibernation. Body mass and its changes depend on autumnal food availability as well as on the dietary FA pattern. During the pre-hibernation fattening period, dormice eat lipid rich food with a high content of linoleic acid. During hibernation, linoleic acid content is slightly but significantly reduced and body mass loss during winter is negatively correlated with the pre-hibernation linoleic acid content in the WAT. No relation between reproductive status and body mass, body condition or the FAs pattern of the WAT could be detected. However, in a year of high reproduction, dormice commence the shift to seed eating earlier than in a year of low reproduction. These seeds could be either a predictor for future food supply in autumn, or represent a high-energy food compensating high energetic costs of sexual activity in male edible dormice.  相似文献   

18.
Hibernation in the tropics: lessons from a primate   总被引:7,自引:0,他引:7  
The Malagasy primate Cheirogaleus medius hibernates in tree holes for 7 months, although ambient temperatures during hibernation rise above 30°C in their natural environment. In a field study we show that during hibernation the body temperature of most lemurs fluctuates between about 10°C and 30°C, closely tracking the diurnal fluctuations of ambient temperature passively. These lemurs do not interrupt hibernation by spontaneous arousals, previously thought to be obligatory for all mammalian hibernators. However, some lemurs hibernate in large trees, which provide better thermal insulation. Their body temperature fluctuates only little around 25°C, but they show regular arousals, as known from temperate and arctic hibernators. The results from this study demonstrate that maximum body temperature is a key factor necessitating the occurrence of arousals. Furthermore, we show that hibernation is not necessarily coupled to low body temperature and, therefore, low body temperature should no longer be included in the definition of hibernation.  相似文献   

19.
P. J. Young 《Oecologia》1990,83(4):504-511
Summary The patterns of torpor and euthermy during hibernation was documented for 28 free-ranging Columbian ground squirrels (Spermophilus columbianus) fitted with temperature-sensitive radio transmitter collars. Adult males began hibernation earlier, were euthermic for a greater proportion of the hibernating season and emerged earlier than other age and sex classes. The patterns of hibernation of adult females did not differ significantly from those of juveniles. Emergence from the hibernaculum was preceded by a long (3–12 d) euthermic interval in adult males but not in adult females or juveniles. Changes in soil temperature did not appear to initiate emergence. The greater time spent euthermic by adult males is interpreted as a significantly greater energy cost of hibernation for adult males than for other age and sex classes. The benefits offsetting these costs may be increased reproductive potential in spring and avoidance of predation in late summer.  相似文献   

20.
Gail R. Michener 《Oecologia》1992,89(3):397-406
Summary Over-winter torpor patterns of Richardson's ground squirrels hibernating in southern Alberta were monitored with temperature-sensitive radiocollars to determine if these patterns differed between males and females in a manner related to the greater costs of mating effort by males than females. The hibernation season (from immergence to emergence) was composed of three periods: post-immergence euthermy, heterothermy, and pre-emergence euthermy. The hibernation season was shorter for juveniles than adults both among males (< 150 versus 234 days) and females (185 versus 231 days), a reflection of the later immergence into hibernation by juveniles. However, regardless of the absolute duration of hibernation, heterothermy accounted for a smaller proportion of the hibernation season of males (93±5%) than females (98±1%) and, within the heterothermal period, males had shorter torpor bouts and longer inter-torpor arousals. Overall, males spent a smaller proportion of the hibernation season in torpor (85±6%) than females (92±1%). This sexual difference was largely attributable to the longer duration of preemergence euthermy for males than females. Males terminated torpor in January and February, when hibernacula were at their coldest, then remained euthermic for 8.8 days (range 0.5–25.0 days) before emergence. In contrast, females terminated torpor in March, when hibernaculum temperatures were increasing, then remained euthermic for only 1.1 days (range 0.5–2.0 days) before emergence. Males lost less mass per euthermic day during hibernation than females (7.0 versus 9.3 g/day). Males and females hibernated at similar depths (56 cm), but males had larger chambers than females (18 versus 16 cm3/g). Many males, but no females, cached seeds in the hibernaculum. Males met the costs of thermogenesis and euthermy from a combination of fat reserves and food caches, whereas females relied solely on fat. Access to food caches permitted males to terminate torpor several weeks in advance of emergence, during which time they recouped mass and developed sperm in preparation for the forthcoming mating season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号