首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptospirosis is a bacterial zoonotic disease caused by spirochetes in the genus Leptospira. To date, factors determining the pathogenicity and virulence of leptospires remain unclear. We performed a gel‐based proteomic analysis to evaluate differential leptospiral proteomes in the pathogenic L. interrogans (serovars Australis, Bratislava, Autumnalis, and Icterohaemorrhagiae) and the non‐pathogenic L. biflexa (serovar Patoc). Quantitative proteome analysis and MS protein identification revealed 42 forms of 33 unique proteins whose levels were significantly greater in the pathogenic serovars compared with the non‐pathogenic serovar. Among the four pathogenic serovars, the more virulent serovar Icterohaemorrhagiae (which is most commonly associated with severe leptospirosis in patients) had significantly greater levels of 14 forms of 12 unique proteins, when compared with the other three pathogenic serovars. Some of these identified proteins may serve as the pathogenic and/or virulence factors of leptospirosis.  相似文献   

2.
Cell‐based biosensors have been proposed for use as function‐based detectors of toxic agents. We report the use of Betta splendens chromatophore cells, specifically erythrophore cells, for detection of food‐associated pathogenic bacteria. Evaluation of erythrophore cell response, using Bacillus spp., has revealed that this response can distinguish pathogenic Bacillus cereus from a non‐pathogenic B. cereus ΔplcR deletion mutant and a non‐pathogenic Bacillus subtilis. Erythrophore cells were exposed to Salmonella enteritidis, Clostridium perfringens and Clostridium botulinum. Each bacterial pathogen elicited a response from erythrophore cells that was distinguished from the corresponding bacterial growth medium, and this observed response was unique for each bacterial pathogen. These findings suggest that erythrophore cell response has potential for use as a biosensor in the detection and toxicity assessment for food‐associated pathogenic bacteria.  相似文献   

3.
4.
The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.  相似文献   

5.
曾瑾  王玉炯  邓光存 《生物学杂志》2010,27(1):80-83,96
毒力岛作为细菌染色体上一段具有典型结构特征的基因簇,与多种致病茵毒力因子的产生和细菌的进化有密切的关系,研究毒力岛对于认识致病细菌的变异,阐述病原菌的致病机理,预测新病原茵的出现有着十分重要的意义。  相似文献   

6.
Predation of bacteria by phagocytic cells was first developed during evolution by environmental amoebae. Many of the core mechanisms used by amoebae to sense, ingest and kill bacteria have also been conserved in specialized phagocytic cells in mammalian organisms. Here we focus on recent results revealing how Dictyostelium discoideum senses and kills non‐pathogenic bacteria. In this model, genetic analysis of intracellular killing of bacteria has revealed a surprisingly complex array of specialized mechanisms. These results raise new questions on these processes, and challenge current models based largely on studies in mammalian phagocytes. In addition, recent studies suggest one additional level on complexity by revealing how Dictyostelium recognizes specifically various bacterial species and strains, and adapts its metabolism to process them. It remains to be seen to what extent mechanisms uncovered in Dictyostelium are also used in mammalian phagocytic cells.  相似文献   

7.
The oilseed rape (Brassica napus) stem canker disease, due to the fungal pathogen Leptosphaeria maculans, is mainly controlled by host genetic resistance. Since 2004, the specific resistance gene Rlm7 is widely used in France. Specific resistance is effective when fungal populations are mainly composed of avirulent isolates. The development of molecular tools for the identification of virulent isolates towards Rlm7 was needed to undertake large‐scale surveys and to monitor the emergence of virulent populations in fields. Previous studies have described a large diversity of molecular events leading to virulence towards Rlm7, rendering conventional polymerase chain reaction (PCR) methods inapplicable to identify virulent isolates. Interestingly, a very limited nucleotide polymorphism was observed for avirulent, AvrLm7, alleles. Such characteristics were exploited here to develop a diagnostic method based on high resolution melting (HRM) analysis of the AvrLm4‐7 gene. High resolution melting analysis of a collection of 206 reference isolates revealed only four different profiles within 100 avirulent isolates and 87% of virulent isolates showed either no amplification or HRM curves distinct from those of avirulent isolates. The reliability of the method was confirmed using a second set of 119 unknown isolates, for which biological phenotyping and HRM genotyping were in agreement for 93% of the isolates. HRM combined with the PCR amplification of a larger fragment encompassing AvrLm4‐7 led to a correct diagnostic for 97.5% of the isolates.  相似文献   

8.
The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an appropriate response. Toll-like receptors (TLRs) detect microbial components common to both pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs) sense microbial components introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS), induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-κB activation by TLR signaling as well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38 and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple bacterial components enables immune discrimination between virulent and avirulent bacteria.  相似文献   

9.
1. The aerial surface of plants is a habitat for large and diverse microbial communities; termed the phyllosphere. These microbes are unavoidably consumed by herbivores, and while the entomopathogens are well studied, the impact of non‐pathogenic bacteria on herbivore life history is less clear. 2. Previous work has suggested that consumption of non‐entomopathogenic bacteria induces a costly immune response that might decrease the risk of infection. However, we hypothesised that insect herbivores should be selective in how they respond to commonly encountered non‐pathogenic bacteria on their host plants to avoid unnecessary and costly immune responses. 3. An ecologically realistic scenario was used in which we fed cabbage looper, Trichoplusia ni Hübner, larvae on cabbage or cucumber leaves treated with the common non‐entomopathogenic phyllosphere bacteria, Pseudomonas fluorescens and P. syringae. Their constitutive immunity and resistance to a pathogenic bacterium (Bacillus thuringiensis; Bt) and a baculovirus (T. ni single nucleopolyhedrovirus) were then examined. 4. While feeding on bacteria‐treated leaves reduced the growth rate and condition of T. ni, there was no effect on immunity (haemolymph antibacterial and phenoloxidase activities and haemocyte numbers). Phyllosphere bacteria weakly affected the resistance of T. ni to Bt but the direction of this effect was concentration dependent; resistance to the virus was unaffected. Host plant had an impact, with cucumber‐fed larvae being more susceptible to Bt. 5. The lack of evidence for a costly immune response to non‐entomopathogenic bacteria suggests that T. ni are probably adapted to consuming common phyllosphere bacteria, and highlights the importance of the evolutionary history of participants in multi‐trophic interactions.  相似文献   

10.
Variations in the expression of the oncogenic power of Agrobacterium tumefaciens due to interactions between bacteria. The effects of the virulent strain A6 of Agrobacterium tumefaciens after co-culture with non-virulent variants of the same bacterium, or even with other bacterial species (e.g. Escherichia coli), showed that interactions between different strains of bacteria exist. These interactions are expressed as a phenomenon of either enhancement or inhibition, as shown by an increase or a decrease in the weights of tumors induced in decapitated stems of Pisum sativum L. cv. Annonay. These two phenomena depend on the contact time between the bacteria in mixed cultures (type I). With a short contact time between the two bacterial types (one or two generations), infections in decapitated pea stems produced by mixed inocula caused an increase in tumor weight compared with infections induced by inocula of virulent bacteria only. If the contact time was increased to the end of the log phase, a decrease in tumor weight was observed. Clarified supernatant fluids of spent media were also used as culture media (type II) for the virulent A6 bacteria. The stimulatory or inhibitory activity of (a) substance(s) present in these supernatant fluids depended on two variables: culture time of the bacteria A6 in the supernatant fluids and the “age” of the bacterial culture used to prepare them. Weight increase of the tumors was obtained if the proliferating time of the A6 bacteria in the supernatant fluids was short (4 h), or if the super natants were obtained from “young” cultures. Inhibition of the tumor expression occurred if the contact time of A6 bacteria in the supernatant fluids was increased or if the supernatants originated from bacterial cultures at the end of their growth. The in vitro interactions between the two bacterial strains in a mixed culture (type I or type II) were suppressed in the presence of pancreatic ribonuclease. Deoxyribonuclease had no effect. This provides indirect evidence for the action of a ribonucleic acid in the expression of the oncogenic power of a bacterial population of Agrobacterium tumefaciens.  相似文献   

11.
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N‐acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL‐mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram‐negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid‐type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194‐amino‐acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF‐mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c‐di‐GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.  相似文献   

12.
13.
Acquisition of new genetic material through horizontal gene transfer has been shown to be an important feature in the evolution of many pathogenic bacteria. Changes in the genetic repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens. However, horizontal gene transfer across the domains i.e. archaea and bacteria is not so common. In this context, we explore events of horizontal gene transfer between archaea and bacteria. In order to determine whether the acquisition of archaeal genes by lateral gene transfer is an important feature in the evolutionary history of the pathogenic bacteria, we have developed a scheme of stepwise eliminations that identifies archaeal-like genes in various bacterial genomes. We report the presence of 9 genes of archaeal origin in the genomes of various bacteria, a subset of which is also unique to the pathogenic members and are not found in respective non-pathogenic counterparts. We believe that these genes, having been retained in the respective genomes through selective advantage, have key functions in the organism’s biology and may play a role in pathogenesis.  相似文献   

14.
Trade‐offs between virulence (defined as the ability to infect a resistant host) and life‐history traits are of particular interest in plant pathogens for durable management of plant resistances. Adaptation to plant resistances (i.e., virulence acquisition) is indeed expected to be associated with a fitness cost on susceptible hosts. Here, we investigated whether life‐history traits involved in the fitness of the potato cyst nematode Globodera pallida are affected in a virulent lineage compared to an avirulent one. Both lineages were obtained from the same natural population through experimental evolution on resistant and susceptible hosts, respectively. Unexpectedly, we found that virulent lineages were more fit than avirulent lineages on susceptible hosts: they produced bigger cysts, containing more larvae and hatching faster. We thus discuss possible reasons explaining why virulence did not spread into natural G. pallida populations.  相似文献   

15.
A field survey was conducted to determine the relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato plants grown in plastic greenhouses. Both vegetative and reproductive stages of the plants were surveyed, and the symptoms were empirically categorized into five scales: 0 (asymptomatic): 1st, 2nd, 3rd and 4th. The bacterial wilt pathogen was isolated from infected plants at each disease scale; pathogenic characteristics and population densities of the bacterial strains were assessed. Two hundred and eighty‐two isolates were identified as R. solanacearum, which were divided into three pathogenic types, virulent, avirulent and interim, using the attenuation index (AI) method and a plant inoculation bioassay. Ralstonia solanacearum was detected in all asymptomatic and symptomatic tomato plants, with population numbers, ranging from 10.5 to 86.7 × 105 cfu/g. However, asymptomatic plants harboured only avirulent or interim R. solanacearum, whereas tomato plants displaying 1st or 2nd disease degree contained interim and virulent strains. Additionally, 3rd and 4th degree plants harboured only virulent strains. The disease was more severe in vegetative‐stage plants (disease severity index (DSI) 0.20) with higher total numbers of interim and virulent R. solanacearum strains than those in reproductive‐stage plants (DSI 0.12). Three pathotypes of R. solanacearum coexisted in a competitive growth system in the tomato field, and their distribution closely correlated with the severity of tomato bacterial wilt.  相似文献   

16.
Z. Bozsó    P. G. Ott    A. Szatmari    A. Czelleng    G. Varga    E. Besenyei    É. Sárdi    É. Bányai    Z. Klement 《Journal of Phytopathology》2005,153(10):596-607
The present study demonstrate that in tobacco leaves the diaminobenzidine (DAB) and 2′,7′‐dichlorofluorescein diacetate (DCFH‐DA) staining is a useful indicator of the basal (also known as general or innate) defence‐associated reactions, especially of the early developing form of basal resistance (EBR). DAB and DCFH‐DA, in the presence of H2O2 and peroxidase converts to a brown polymer and fluorescent DCF respectively. In the present study, the hypersensitive response (HR)‐inducing avirulent Pseudomonas syringae pv. syringae 61, its HR‐negative hrp/hrc mutants and even non‐pathogenic bacteria such as P. fluorescens and Escherichia coli caused DAB and DCFH‐DA staining, if the dyes were injected 3–4 h after bacterial inoculation into tobacco leaves. The conditions that enable the staining of plant leaves infiltrated with HR‐negative bacteria were persisted for 1 to several days depending on the physiological state of the plant, and plant activity was required to the development of the staining. The live virulent P. syringae pv. tabaci was able to suppress the development of the staining reaction. Bacteria that induced more intensive staining reaction triggered stronger local resistance response, which was verified by its ability to inhibit the HR by challenging avirulent bacteria and by expression analysis of genes that are activated during the basal defence response. The peroxidase enzyme activity increased in bacterially treated tobacco tissue, and inhibition of peroxidase activity blocked the development of the staining. The results showed that in tobacco leaves the staining reactions were associated with the general recognition and basal defence reaction of tobacco plant and can be used as markers in tobacco leaves for testing the occurrence of this type of defence.  相似文献   

17.
In almost all infections in the oral cavity, mixed populations of bacteria are present. However, recent evidence points to a certain specificity in these infections:Streptococcus mutans is related to caries and black-pigmentedBacteroides species are suspected pathogens in periodontal disease. Periodontal diseases, endodontic infections and submucous abscesses in the oral cavity are probably mixed infections in which anaerobic bacteria together with facultatives or other anaerobes are present. In experimental mixed anaerobic infections black-pigmentedBacteroides strains have been shown to play a key role. Little is known about the pathogenic synergy between the bacteria involved in mixed infections. Important mechanisms could be nutritional interrelationships and interactions with the host defense. Within the group of black-pigmentedBacteroides B. gingivalis seems to be the most virulent species. These bacteria possess a great number of virulence factors, which might be important in the pathogenesis of oral infections.  相似文献   

18.
Virulence genes of pathogenic bacteria, which code for toxins, adhesins, invasins or other virulence factors, may be located on transmissible genetic elements such as transposons, plasmids or bacteriophages. In addition, such genes may be part of particular regions on the bacterial chromosome, termed‘pathogenicity islands’(Pais). Pathogenicity islands are found in Gram-negative as well as in Gram-positive bacteria. They are present in the genome of pathogenic strains of a given species but absent or only rarely present in those of non-pathogenic variants of the same or related species. They comprise large DNA regions (up to 200 kb of DNA) and often carry more than one virulence gene, the G+C contents of which often differ from those of the remaining bacterial genome. In most cases, Pais are flanked by specific DNA sequences, such as direct repeats or insertion sequence (IS) elements. In addition, Pais of certain bacteria (e.g. uropathogenic Escherichia coli, Yersinia spp., Helicobacter pylori) have the tendency to delete with high frequencies or may undergo duplications and amplifications. Pais are often associated with tRNA loci, which may represent target sites for the chromosomal integration of these elements. Bacteriophage attachment sites and cryptic genes on Pais, which are homologous to phage integrase genes, plasmid origins of replication or IS elements, indicate that these particular genetic elements were previously able to spread among bacterial populations by horizontal gene transfer, a process known to contribute to microbial evolution.  相似文献   

19.
Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant‐pathogenic microorganisms have been reduced to a plant‐centric and agro‐centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio‐economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant‐pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant‐pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant‐pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges:
  • Development of terminology to describe plant–bacterial relationships in terms of bacterial fitness.
  • Definition of the full scope of the environments in which plant‐pathogenic bacteria reside or survive.
  • Delineation of pertinent phylogenetic contours of plant‐pathogenic bacteria and naming of strains independent of their presumed life style.
  • Assessment of how traits of plant‐pathogenic bacteria evolve within the overall framework of their life history.
  • Exploration of possible beneficial ecosystem services contributed to by plant‐pathogenic bacteria.
  相似文献   

20.
Mixed infections are thought to have a major influence on the evolution of parasite virulence. During a mixed infection, higher within‐host parasite growth is favored under the assumption that it is critical to the competitive success of the parasite. As within‐host parasite growth may also increase damage to the host, a positive correlation is predicted between virulence and competitive success. However, when parasites must kill their hosts in order be transmitted, parasites may spend energy on directly attacking their host, even at the cost of their within‐host growth. In such systems, a negative correlation between virulence and competitive success may arise. We examined virulence and competitive ability in three sympatric species of obligately killing nematode parasites in the genus Steinernema. These nematodes exist in a mutualistic symbiosis with bacteria in the genus Xenorhabdus. Together the nematodes and their bacteria kill the insect host soon after infection, with reproduction of both species occurring mainly after host death. We found significant differences among the three nematode species in the speed of host killing. The nematode species with the lowest and highest levels of virulence were associated with the same species of Xenorhabdus, indicating that nematode traits, rather than the bacterial symbionts, may be responsible for the differences in virulence. In mixed infections, host mortality rate closely matched that associated with the more virulent species, and the more virulent species was found to be exclusively transmitted from the majority of coinfected hosts. Thus, despite the requirement of rapid host death, virulence appears to be positively correlated with competitive success in this system. These findings support a mechanistic link between parasite growth and both anti‐competitor and anti‐host factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号