首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross‐sectional spatial survey carried out from late May 2013 to mid‐July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation.  相似文献   

2.
The cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae) (Bouché), is the most common flea species found on cats and dogs worldwide. We investigated the genetic identity of the cosmopolitan subspecies C. felis felis and evaluated diversity of cat fleas from Australia, Fiji, Thailand and Seychelles using mtDNA sequences from cytochrome c oxidase subunit I (cox1) and II (cox2) genes. Both cox1 and cox2 confirmed the high phylogenetic diversity and paraphyletic origin of C. felis felis. The African subspecies C. felis strongylus (Jordan) is nested within the paraphyletic C. felis felis. The south East Asian subspecies C. felis orientis (Jordan) is monophyletic and is supported by morphology. We confirm that Australian cat fleas belong to C. felis felis and show that in Australia they form two distinct phylogenetic clades, one common with fleas from Fiji. Using a barcoding approach, we recognize two putative species within C. felis (C. felis and C. orientis). Nucleotide diversity was higher in cox1 but COX2 outperformed COX1 in amino acid diversity. COX2 amino acid sequences resolve all phylogenetic clades and provide an additional phylogenetic signal. Both cox1 and cox2 resolved identical phylogeny and are suitable for population structure studies of Ctenocephalides species.  相似文献   

3.
Fleas represent an acknowledged burden on dogs worldwide. The characterization of flea species infesting kennel dogs from two localities in Israel (Rehovot and Jerusalem) and their molecular screening for Bartonella species (Rhizobiales: Bartonellaceae) was investigated. A total of 355 fleas were collected from 107 dogs. The fleas were morphologically classified and molecularly screened targeting the Bartonella 16S–23S internal transcribed spacer (ITS). Of the 107 dogs examined, 80 (74.8%) were infested with Ctenocephalides canis (Siphonaptera: Pulicidae), 68 (63.6%) with Ctenocephalides felis, 15 (14.0%) with Pulex irritans (Siphonaptera: Pulicidae) and one (0.9%) with Xenopsylla cheopis (Siphonaptera: Pulicidae). Fleas were grouped into 166 pools (one to nine fleas per pool) according to species and host. Thirteen of the 166 flea pools (7.8%) were found to be positive for Bartonella DNA. Detected ITS sequences were 99–100% similar to those of four Bartonella species: Bartonella henselae (six pools); Bartonella elizabethae (five pools); Bartonella rochalimae (one pool), and Bartonella bovis (one pool). The present study indicates the occurrence of a variety of flea species in dogs in Israel; these flea species are, in turn, carriers of several zoonotic Bartonella species. Physicians, veterinarians and public health workers should be aware of the presence of these pathogens in dog fleas in Israel and preventive measures should be implemented.  相似文献   

4.
Bartonellosis is an infectious bacterial disease. The prevalence and genetic characteristics of Bartonella spp. in fleas of wild and domestic animals from Palestinian territories are described. Flea samples (n=289) were collected from 121 cats, 135 dogs, 26 hyraxes and seven rats from northern (n=165), central (n=113), and southern Palestinian territories (n=11). The prevalent flea species were: Ctenocephalides felis (n=119/289; 41.2%), Ctenocephalides canis (n=159/289; 55%), and Xenopsylla sp. (n=7/289; 2.4%). Targeting the Intergenic Transcribed Spacer (ITS) locus, DNA of Bartonella was detected in 22% (64/289) of all fleas. Fifty percent of the C. felis and 57% of the Xenopsylla sp. contained Bartonella DNA. DNA sequencing showed the presence of Bartonella clarridgeiae (50%), Bartonella henselae (27%), and Bartonella koehlerae (3%) in C. felis. Xenopsylla sp. collected from Rattus rattus rats were infected with Bartonella tribocorum, Bartonella elizabethae, and Bartonella rochalimae. Phylogenetic sequence analysis using the 16S ribosomal RNA gene obtained four genetic clusters, B. henselae and B. koehlerae as subcluster 1, B. clarridgeiae as cluster 2, while the rat Bartonella species (B. tribocorum and B. elizabethae) were an outgroup cluster. These findings showed the important role of cat and rat fleas as vectors of zoonotic Bartonella species in Palestinian territories. It is hoped that this publication will raise awareness among physicians, veterinarians, and other health workers of the high prevalence of Bartonella spp. in fleas in Palestinian territories and the potential risk of these pathogens to humans and animals in this region.  相似文献   

5.
The cat flea (Ctenocephalides felis) is the most common parasite of domestic cats and dogs worldwide. Due to the morphological ambiguity of C. felis and a lack of — particularly largescale — phylogenetic data, we do not know whether global C. felis populations are morphologically and genetically conserved, or whether human-mediated migration of domestic cats and dogs has resulted in homogenous global populations. To determine the ancestral origin of the species and to understand the level of global pervasion of the cat flea and related taxa, our study aimed to document the distribution and phylogenetic relationships of Ctenocephalides fleas found on cats and dogs worldwide. We investigated the potential drivers behind the establishment of regional cat flea populations using a global collection of fleas from cats and dogs across six continents. We morphologically and molecularly evaluated six out of the 14 known taxa comprising genus Ctenocephalides, including the four original C. felis subspecies (Ctenocephalides felis felis, Ctenocephalides felis strongylus, Ctenocephalides felis orientis and Ctenocephalides felis damarensis), the cosmopolitan species Ctenocephalides canis and the African species Ctenocephalides connatus. We confirm the ubiquity of the cat flea, representing 85% of all fleas collected (4357/5123). Using a multigene approach combining two mitochondrial (cox1 and cox2) and two nuclear (Histone H3 and EF-1α) gene markers, as well as a cox1 survey of 516 fleas across 56 countries, we demonstrate out-of-Africa origins for the genus Ctenocephalides and high levels of genetic diversity within C. felis. We define four bioclimatically limited C. felis clusters (Temperate, Tropical I, Tropical II and African) using maximum entropy modelling. This study defines the global distribution, African origin and phylogenetic relationships of global Ctenocephalides fleas, whilst resolving the taxonomy of the C. felis subspecies and related taxa. We show that humans have inadvertently precipitated the expansion of C. felis throughout the world, promoting diverse population structure and bioclimatic plasticity. By demonstrating the link between the global cat flea communities and their affinity for specific bioclimatic niches, we reveal the drivers behind the establishment and success of the cat flea as a global parasite.  相似文献   

6.
Medically important arthropods, including fleas, play an important role in causing clinical disorders and disease in man and domestic animals. This study was conducted to determine the seasonal flea infestations for domestic dogs from different geographic regions of Iran. A total of 407 fleas, belonging to 5 different species, were recovered from 83 domestic dogs from 3 regions. There was a distinctive pattern of species distribution and infestations with the highest infestation rates observed in a temperate climate and higher rainfall. Additionally, fleas were observed over all seasons, except February and March, with the highest infestation rate observed in August (24.7%) and the lowest rate in January (1.7%). They also parasitize dogs with a different spectrum of species. The cat flea, Ctenocephalides felis (67.5%), exhibited the highest prevalence among all flea species found on dogs. Thus, climatic conditions and seasonal patterns impact on flea infestation and must be considered in developing control programs.  相似文献   

7.
Ticks and fleas are vectors for numerous human and animal pathogens. Controlling them, which is important in combating such diseases, requires accurate identification, to distinguish between vector and non‐vector species. Recently, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) was applied to the rapid identification of arthropods. The growth of this promising tool, however, requires guidelines to be established. To this end, standardization protocols were applied to species of Rhipicephalus sanguineus (Ixodida: Ixodidae) Latreille and Ctenocephalides felis felis (Siphonaptera: Pulicidae) Bouché, including the automation of sample homogenization using two homogenizer devices, and varied sample preservation modes for a period of 1–6 months. The MS spectra were then compared with those obtained from manual pestle grinding, the standard homogenization method. Both automated methods generated intense, reproducible MS spectra from fresh specimens. Frozen storage methods appeared to represent the best preservation mode, for up to 6 months, while storage in ethanol is also possible, with some caveats for tick specimens. Carnoy's buffer, however, was shown to be less compatible with MS analysis for the purpose of identifying ticks or fleas. These standard protocols for MALDI‐TOF MS arthropod identification should be complemented by additional MS spectrum quality controls, to generalize their use in monitoring arthropods of medical interest.  相似文献   

8.
Abstract The host-specificity and the host-selection of 11 species of fleas collected from 47 species of small mammals in foci of human plague in Yunnan, China, were studied by using methods in the evaluation of ecological niche breadth and overlap. Levins' niche breadth was used for the host-specificity. while clip angle niche overlap and a fuzzy clustering analysis were used for host-selection. Of the 11 species of fleas, the host-specificity of Nosopsyllus elongatus puerensis and Xenopsylla cheopis are the highest (narrow niche breadth), and those of Aviostivalis klossi bispiniformis and Neopsylla stevensi sichuanyunnana the lowest (wide niche breadth). Of 11 species of fleas, the dominant host of X. cheopis (a very high effective vector of plague in the foci of human plague in Yunnan Province. China) is Rattw flavipectus (the main animal host and infectious source of plague in the foci). A high host-specificity of X. cheopis implies that X. cheopis mainly maintains or transmits the pathogen of plague among the individuals of its dominant species of host, R. flavipectus. The result of niche overlap analysis reveals that Ctenophthalrnus In-evipre jiciens and Ctenophthaltnus parcus have a similar host-selection while other species of fleas are quite different in their host selection.  相似文献   

9.
The cat flea, Ctenocephalides felis felis (Bouche, 1835) (Siphonaptera: Pulicidae), which is found worldwide and which parasitizes many species of wild and domestic animal, is a vector and/or reservoir of bacteria, protozoa and helminths. To aid in the study of the physiology and behaviour of fleas and of their transmission of pathogens, it would be of value to improve the laboratory rearing of pathogen‐free fleas. The conditions under which artificially reared fleas at the University of Bristol (U.K.) and the Rickettsial Diseases Institute (France) are maintained were studied, with different ratios of male to female fleas per chamber (25 : 50, 50 : 100, 100 : 100, 200 : 200). The fleas were fed with bovine, ovine, caprine, porcine or human blood containing the anticoagulants sodium citrate or EDTA. Egg production was highest when fleas were kept in chambers with a ratio of 25 males to 100 females. In addition, the use of EDTA as an anticoagulant rather than sodium citrate resulted in a large increase in the number of eggs produced per female; however, the low percentage of eggs developing through to adult fleas was lower with EDTA. The modifications described in our rearing methods will improve the rearing of cat fleas for research.  相似文献   

10.
Fleas are insects with a worldwide distribution that have been implicated in the transmission of several pathogens. The present study aimed to investigate the presence of Rickettsia spp. (Rickettsiales: Rickettsiaceae) and Bartonella spp. (Rhizobiales: Bartonellaceae) in fleas from free‐ranging crab‐eating foxes Cerdocyon thous (Linnaeus, 1766) (Carnivora: Canidae) from Rio Grande do Sul, southern Brazil. Fleas were collected manually from animals and used for the molecular detection of Rickettsia spp. and Bartonella spp. Twenty‐nine C. thous were sampled in six municipalities. Four foxes were parasitized by 10 fleas, all of which were identified as Ctenocephalides felis (Bouché, 1935) (Siphonaptera: Pulicidae). DNA from Rickettsia felis Bouyer et al., 2001 and Rickettsia asembonensis Maina et al., 2016 were found in three and eight fleas, respectively. In four fleas, DNA of Bartonella sp. was identified. Phylogenetic analysis grouped Bartonella sp. together with other genotypes previously reported in C. felis worldwide. The scenario described in the present study highlights a Neotropical canid parasitized by the invasive cosmopolitan cat flea, which in turn, is carrying potentially invasive vector‐borne microorganisms. These findings suggest that C. felis is adapted to wild hosts in wilderness areas in southern Brazil, hypothetically exposing the Neotropical fauna to unknown ecological and health disturbances.  相似文献   

11.
The molluscan fauna of the Persian Gulf has recently been relatively well documented, yet there are few records of heterobranch sea slugs (opisthobranchs) from the Arabian parts and no report from the Iranian waters. Here we report for the first time the occurrence of one of these molluscs in the northern Persian Gulf (Bandar Abbas, Iran). Sacoglossan specimens were collected in association with the seaweed, Caulerpa sertularioides. Since morphological attributes were not adequately reliable for species identification, molecular approaches were carried out. Maximum-likelihood and Bayesian Inference analysis of partial DNA sequences of the mitochondrial cytochrome c oxidase subunit I (COI) locus were used for DNA barcoding of large-bodied specimens of Elysia. All Persian Gulf specimens were genetically confirmed as Elysia cf. tomentosa sp. 5, one of at least five morphologically similar but genetically distinct species in the taxonomically challenging and unresolved E. tomentosa complex. This species has previously been recorded only from Australia and Thailand and our finding adds another distant point to the geographic distribution of this species.  相似文献   

12.
The occurrence of Aphelinus paramali (Zehavi & Rosen) (Hym., Aphelinidae) was evidenced from North east Iran, in association with Aphis pomi (de Geer). This species is reported from Iran for the first time, and A. pomi is introduced as a new host for this parasitoid. Detailed morphological characters were studied with scanning electron microscopy (SEM) photographs. Also, sequences of ribosomal internal transcribed spacer 2 (ITS2) and cytochrome oxidase subunit I (COI) genes were used for determining species boundaries and comparing with other Aphelinus species. Different results were obtained in phylogenetic analysis of these two regions. Analysis of COI gene supported the closer relationship of this species with Aphelinus abdominalis. This is the first data about comprehensive characterization of a parasitic wasp using morphological characters, SEM and two‐locus information from Iran.  相似文献   

13.
Outbreaks of plague, a flea‐vectored bacterial disease, occur periodically in prairie dog populations in the western United States. In order to understand the conditions that are conducive to plague outbreaks and potentially predict spatial and temporal variations in risk, it is important to understand the factors associated with flea abundance and distribution that may lead to plague outbreaks. We collected and identified 20,041 fleas from 6,542 individual prairie dogs of four different species over a 4‐year period along a latitudinal gradient from Texas to Montana. We assessed local climate and other factors associated with flea prevalence and abundance, as well as the incidence of plague outbreaks. Oropsylla hirsuta, a prairie dog specialist flea, and Pulex simulans, a generalist flea species, were the most common fleas found on our pairs. High elevation pairs in Wyoming and Utah had distinct flea communities compared with the rest of the study pairs. The incidence of prairie dogs with Yersinia pestis detections in fleas was low (n = 64 prairie dogs with positive fleas out of 5,024 samples from 4,218 individual prairie dogs). The results of our regression models indicate that many factors are associated with the presence of fleas. In general, flea abundance (number of fleas on hosts) is higher during plague outbreaks, lower when prairie dogs are more abundant, and reaches peak levels when climate and weather variables are at intermediate levels. Changing climate conditions will likely affect aspects of both flea and host communities, including population densities and species composition, which may lead to changes in plague dynamics. Our results support the hypothesis that local conditions, including host, vector, and environmental factors, influence the likelihood of plague outbreaks, and that predicting changes to plague dynamics under climate change scenarios will have to consider both host and vector responses to local factors.  相似文献   

14.
Human plague risks (Yersinia pestis infection) are greatest when epizootics cause high mortality among this bacterium's natural rodent hosts. Therefore, health departments in plague‐endemic areas commonly establish animal‐based surveillance programs to monitor Y. pestis infection among plague hosts and vectors. The primary objectives of our study were to determine whether passive animal‐based plague surveillance samples collected in Colorado from 1991 to 2005 were sampled from high human plague risk areas and whether these samples provided information useful for predicting human plague case locations. By comparing locations of plague‐positive animal samples with a previously constructed GIS‐based plague risk model, we determined that the majority of plague‐positive Gunnison's prairie dogs (100%) and non‐prairie dog sciurids (85.82%), and moderately high percentages of sigmodontine rodents (71.4%), domestic cats (69.3%), coyotes (62.9%), and domestic dogs (62.5%) were recovered within 1 km of the nearest area posing high peridomestic risk to humans. In contrast, the majority of white‐tailed prairie dog (66.7%), leporid (cottontailed and jack rabbits) (71.4%), and black‐tailed prairie dog (93.0%) samples originated more than 1 km from the nearest human risk habitat. Plague‐positive animals or their fleas were rarely (one of 19 cases) collected within 2 km of a case exposure site during the 24 months preceding the dates of illness onset for these cases. Low spatial accuracy for identifying epizootic activity prior to human plague cases suggested that other mammalian species or their fleas are likely more important sources of human infection in high plague risk areas. To address this issue, epidemiological observations and multi‐locus variable number tandem repeat analyses (MLVA) were used to preliminarily identify chipmunks as an under‐sampled, but potentially important, species for human plague risk in Colorado.  相似文献   

15.
A total of 559 fleas representing four species (Pulex irritans, Ctenocephalides felis, Ctenocephalides canis and Spilopsyllus cuniculi) collected on carnivores (five Iberian lynx Lynx pardinus, six European wildcat Felis silvestris, 10 common genet Genetta genetta, three Eurasian badger Meles meles, 22 red fox Vulpes vulpes, 87 dogs and 23 cats) in Andalusia, southern Spain, were distributed in 156 pools of monospecific flea from each carnivore, and tested for Bartonella infection in an assay based on polymerase chain reaction (PCR) amplification of the 16 S–23 S rRNA intergenic spacer region. Twenty‐one samples (13.5%) were positive and the sequence data showed the presence of four different Bartonella species. Bartonella henselae was detected in nine pools of Ctenocephalides felis from cats and dogs and in three pools of Ctenocephalides canis from cats; Bartonella clarridgeiae in Ctenocephalides felis from a cat, and Bartonella alsatica in Spilopsyllus cuniculi from a wildcat. DNA of Bartonella sp., closely related to Bartonella rochalimae, was found in seven pools of Pulex irritans from foxes. This is the first detection of B. alsatica and Bartonella sp. in the Iberian Peninsula. All of these Bartonella species have been implicated as agents of human diseases. The present survey confirms that carnivores are major reservoirs for Bartonella spp.  相似文献   

16.
Sylvatic plague (Yersinia pestis) was introduced into North America over 100 years ago. The disease causes high mortality and extirpations in black-tailed prairie dogs (Cynomys ludovicianus), which is of conservation concern because prairie dogs provide habitat for the critically endangered black-footed ferret (Mustela nigripes). Our goal was to help elucidate the mechanism Y. pestis uses to persist in prairie ecosystems during enzootic and epizootic phases. We used a nested PCR protocol to assay for plague genomes in fleas collected from prairie dog burrows potentially exposed to plague in 1999 and 2000. No active plague epizootic was apparent in the 55 prairie dog colonies sampled in 2002 and 2003. However, 63% of the colonies contained plague-positive burrows in 2002, and 57% contained plague-positive burrows in 2003. Within plague-positive colonies, 23% of sampled burrows contained plague-positive fleas in 2002, and 26% contained plague-positive fleas in 2003. Of 15 intensively sampled colonies, there was no relationship between change in colony area and percentage of plague-positive burrows over the two years of the study. Some seasonality in plague prevalence was apparent because the highest percentages of plague-positive colonies were recorded in May and June. The surprisingly high prevalence of plague on study area colonies without any obvious epizootic suggested that the pathogen existed in an enzootic state in black-tailed prairie dogs. These findings have important implications for the management of prairie dogs and other species that are purported to be enzootic reservoir species.  相似文献   

17.
The human flea Pulex irritans Linnaeus, 1758 (Siphonaptera: Pulicidae) is one of the most studied species together with the cat flea Ctenocephalides felis Bouché, 1835, because they have a cosmopolitan distribution and are closely related to humans. The present study aimed to carry out a comparative morphometric and molecular study of two different populations of P. irritans (Spain and Argentina). Accordingly, internal transcribed spacer (ITS)1 and ITS2 of rDNA and the partial cytochrome c oxidase subunit 1 (cox1) and cytochrome b (cytb) mtDNA genes of these taxa were sequenced. Furthermore, the taxonomy, origin, evolution and phylogeny of P. irritans was assessed. The morphometric data obtained did not show significant differences between P. irritans specimens from Spain and Argentina, even when these two populations were collected from different hosts; however, there was a considerable degree of molecular divergence between both populations based on nuclear and mitochondrial markers. Thus, it is proposed that P. irritans, in contrast with other generalist fleas, maintains a certain degree of morphological similarity, at least between Western Palearctic and Neotropical areas. Furthermore, two well defined geographical genetic lineages within the P. irritans species are indicated, suggesting the existence of two cryptic species that could be discriminated by a polymerase chain reaction‐linked restriction fragment length polymorphism.  相似文献   

18.

Comparative analysis of vector activity of fleas in the Siberian natural plague foci was carried out during two long-term periods of experimental studies: 1967–1980 and 1983–2007. The data on block formation frequency in adult fleas infected with Yersinia pestis were analyzed for 127 experiments with 15 flea species and subspecies. The vector activity of fleas in all the Siberian plague foci (Altai, Tuva, and Transbaikalia) has increased over a rather short time period of 30–40 years. The frequencies of flea blocking were significantly different (P < 0.001) between the analyzed periods in all the three plague foci.

  相似文献   

19.
Abstract. Cat fleas, Ctenocephalides felis, were released onto calves as unusual hosts, and sampled at intervals for histological examination. Egg output from fleas on age-matched male and female calves was monitored. Using indicators of reproductive maturation and regression together with egg output data, the reproductive success and fertility of cat fleas on male and female calves were estimated. Comparisons were made with fleas taken from cats. The mean egg output of fleas on the bull calf was highly significantly different from that on the age-matched female calf: 28.14 ± 2.96 (SE) eggs/h compared with 16.21 ± 1.96 (SE) eggs/h. A higher proportion of sampled fleas (83.0%) was reproductively mature on the feline hosts compared with the calves (45.4-62.5%). Blue bodies resulting from oocyte resorption were present in the ovarioles of 10.4-19.0% of fleas sampled from the calves. No blue bodies were present in fleas removed from cats. Eggs laid by fleas on calves were viable and larvae were reared to adulthood. The mean percentage hatching success on the age-matched male and female calves was 46.7% and 51.7%. This represents a reduction in viability of 28-33% compared with eggs laid by fleas on cats. Factors which may account for reduced reproductive maturation of fleas on calves, including protein content of the host's blood, are discussed.  相似文献   

20.
Background

Two deep-sea eels collected from the Western Pacific Ocean are described in this study. Based on their morphological characteristics, the two deep-sea eel specimens were assumed to belong to the cusk-eel family Ophidiidae and the cutthroat eel family Synaphobranchidae.

Methods and results

To accurately identify the species of the deep-sea eel specimens, we sequenced the mitochondrial genes (cytochrome c oxidase subunit I [COI] and 16S ribosomal RNA [16S rRNA]). Through molecular phylogenetic analysis based on mtDNA COI and 16S rRNA gene sequences, these species clustered with the genera Bassozetus and Synaphobranchus, suggesting that the deep-sea eel specimens collected are two species from the genera Bassozetus and Synaphobranchus in the Western Pacific Ocean, respectively.

Conclusions

This is the first study to report new records of the genera Bassozetus and Synaphobranchus from the Western Pacific Ocean based on COI and 16S rRNA genes

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号