首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 150 毫秒
1.
贵州万山汞矿区污染土壤中汞的形态分布特征   总被引:14,自引:0,他引:14  
利用优化Tessier连续化学浸提法对贵州万山汞矿区污染土壤中汞的形态分布进行研究.结果表明,稻田土壤中汞主要以残渣态形式存在(79.65%),其次为有机结合态(19.97%)、氧化态(0.31%)、特殊吸附态(0.04%)和溶解态与可交换态(0.03%);除特殊吸附态外,其他各形态汞含量均随距污染源距离增加而降低,特殊吸附态汞在分析土壤中含量变化不明显;生物可利用性(溶解态与可交换态和特殊吸附态)汞占总汞比例较低,但在污染土壤中其含量明显高于未受污染地区.  相似文献   

2.
利用连续浸提法研究了硒对稻田土壤中汞的形态分布及其生物有效性的影响。结果显示:加硒前后土壤中汞均以有机结合态、元素态和硫化物态为主,这三者占土壤总汞含量的90%以上,而生物有效态汞(包括模拟胃酸提取态和水溶态)仅占土壤总汞含量的0.27%。加硒对土壤中有机结合态和元素态汞的影响最为显著,随着硒添加浓度的增加,有机结合态汞的相对含量呈逐渐下降的趋势,而元素态汞相反,但土壤中其他形态的汞含量变化不显著。加硒可有效降低土壤中无机汞和甲基汞的生物有效性。结合土壤中汞形态及其生物有效性的变化可以推测:有机结合汞是维持土壤中生物有效态汞的重要补偿来源,当其转化成更为惰性的元素汞后,影响有机结合态汞与生物有效态汞之间的平衡,可能是导致土壤中汞生物有效性降低的主要因素。  相似文献   

3.
泉州湾红树林湿地沉积物中汞分布及形态特征   总被引:1,自引:0,他引:1  
采集了泉州湾红树林湿地表层沉积物样品,测定了沉积物中不同形态汞的含量,研究了汞的分布特征、赋存形态及其生物有效性.泉州湾红树林湿地表层沉积物中总汞含量范围0.03~0.22 mg·kg-1,除14#采样点外,其余各采样点均符合海洋沉积物质量(GB 18668-2002) Ⅰ类标准;沉积物中不同形态汞占总汞的比例为可氧化态(84.0%)>残渣态(14.0%)>可还原态(1.8%)>弱酸溶态(0.2%);沉积物中汞的生物有效性较高,对红树林生态系统存在一定的潜在危害.  相似文献   

4.
外源水溶性有机物及温度对红壤铜形态的影响   总被引:1,自引:0,他引:1  
利用模拟培养试验研究了外源水溶性有机物(DOM)添加量和培养温度对红壤中Cu形态的影响. 结果表明: 与不添加DOM比较, 添加不同量的DOM均可提高土壤中交换态Cu的含量、降低铁锰结合态Cu含量; 随着培养时间的延长,不同DOM添加量下土壤交换态Cu含量呈逐渐下降趋势;至试验结束时,DOM添加量为250 mg·L-1时土壤交换态和碳酸盐结合态Cu含量最高, 添加量为500 mg·L-1时铁锰结合态Cu含量最高;不同DOM添加量下, 土壤中有机结合态Cu含量较CK增加10.67%~23.66%. 在25 ℃和45 ℃温度条件下, 添加DOM后土壤交换态和铁锰结合态Cu含量均随培养时间的延长呈下降趋势, 但在5 ℃下变化趋势相反; 3种温度下添加DOM后土壤碳酸盐结合态Cu含量有随培养时间延长而增加的趋势. 随着培养温度的升高,土壤有机结合态Cu含量增加, 但在温度较低(5 ℃)时土壤残渣态Cu含量下降.  相似文献   

5.
膨润土联合磷酸氢二铵原位钝化修复汞污染土壤田间试验   总被引:2,自引:0,他引:2  
以贵州万山汞矿区污染农田为试验田,研究添加膨润土、磷酸氢二铵、膨润土+磷酸氢二铵混施对土壤中汞的形态分布以及四季菜心的产量和汞含量的影响。结果表明,与对照土壤相比,添加膨润土、磷酸氢二铵、膨润土+磷酸氢二铵混施都能增加四季菜心地上部分和根系的干重,而且膨润土+磷酸氢二铵混施处理的四季菜心可食部分和根系生物量最大,分别增加4.7和4.8倍。与对照相比,膨润土+磷酸氢二铵混施能显著降低四季菜心地上部分和根系汞含量,其他处理无明显降低趋势。土壤中添加3%膨润土+0.5%磷酸氢二铵的混施处理四季菜心中汞含量最低。通过分析修复前后土壤汞的形态变化特征发现,膨润土+磷酸氢二铵混施能显著降低土壤中的有效态汞(溶解态与可交换态和特殊吸附态汞)和铁锰氧化态汞含量,而有机结合态汞和残渣态汞含量无显著变化。本研究结果可为汞污染土壤修复提供一定技术指导。  相似文献   

6.
中国部分省份农村室内灰尘铅污染特征   总被引:2,自引:0,他引:2  
采集了中国8个省份122件农村室内灰尘样品,对其中铅的含量、赋存形态及生物可给性进行了研究.结果表明,8个省份农村室内灰尘铅平均含量为207.5 mg·kg-1,湖南(平均537.8 mg·kg-1)和云南(280.1 mg·kg-1)铅含量较高,陕西(96.0 mg·kg-1)和福建(80.1 mg·kg-1)相对较低.连续形态提取结果表明,农村室内灰尘铅主要以铁锰氧化物结合态形式存在(36.8%),其次为残渣态(17.7%)和碳酸盐结合态(16.7%),可交换态(14.3%)和有机质结合态(14.4%)铅所占总量比例相对较少.通过体外模拟实验提取的生物可给态铅占总铅的比例平均为52.8%,相关分析显示,生物可给态铅含量与铁锰氧化物结合态铅含量高度相关,表明铁锰氧化物结合态铅对生物可给态铅具有重要贡献.  相似文献   

7.
为了研究露地栽培向设施大棚栽培转变对土壤重金属含量的影响,对武汉市郊区露地和设施塑料大棚两种栽培条件下菜田土壤重金属Cd、Cr和Pb各形态含量及分布特征进行了研究。结果显示,露地和大棚栽培条件下土壤重金属元素Cr和Pb各种形态含量之间没有明显差异,但Cd各种形态含量间有显著差异;从露地到大棚,土壤中Cd酸可提取态含量从露地的0.62 mg/kg上升到大棚的1.19 mg/kg,其次是Cd残渣态、有机结合态、氧化态和碳酸盐结合态;Cd总含量从露地的0.79 mg/kg升高到大棚的1.58 mg/kg,显著超过土壤环境质量标准中的Cd含量标准值(0.3 mg/kg),达到严重污染水平。Cd碳酸盐结合态和氧化态占总量的比例有所降低,而酸可提取态占总量的比例有所升高。说明从露地到设施大棚栽培,促使了土壤中部分Cd碳酸盐结合态和氧化结合态向酸可提取态转变,提高了土壤中Cd的生物有效性。因此,在设施大棚栽培快速发展的情况下,要加强重金属Cd对土壤污染的治理,减少重金属Cd对蔬菜的毒害。  相似文献   

8.
采用连续提取法研究了猪粪好氧堆肥处理中重金属浓度和形态的变化以及添加不同比例的重金属钝化剂对其浓度和形态的影响.结果表明:经过堆肥处理后,猪粪中重金属As、Cu和Zn的总浓度均有所增加.从重金属结合形态的变化来看,可交换态As和Zn含量降低,残渣态As和Zn含量升高,表明As和Zn存在着向有效性相对较低的形态转化的趋势;重金属Cu则表现出不同的变化趋势,即可交换态与残渣态Cu含量下降,而碳酸盐结合态、铁锰结合态及有机结合态Cu含量有所增加,在今后的堆肥利用中应注意其可能带来的环境风险;3种重金属钝化剂及不同添加比例的处理中,5.0%的海泡石和2.5%的膨润土分别对重金属As、Zn表现出较好的钝化效果,堆肥后残渣态As和Zn的增幅分别达到79.8%和158.6%,均高于不加钝化剂处理.与对照相比,堆肥后7.5%的海泡石对残渣态Cu的降低幅度最小,为39.3%.猪粪堆肥中添加适量的重金属钝化剂,可以在一定程度上降低重金属的有效性以及猪粪堆肥利用中重金属污染的风险.  相似文献   

9.
通过盆栽试验,以烟草为对象,研究了硅对土壤 烟草系统中铅的迁移以及土壤、烟草中铅形态分布的影响.结果表明: 施硅使非根际土壤可交换态铅向铁锰氧化物结合态转化,使根际土中交换态铅向铁锰氧化物结合态和残渣态转化,降低了土壤中铅的植物有效性与迁移性.施硅显著提高了烟草根部和叶部的生物量,显著降低了烟草铅的总吸收量和烟草各器官的铅含量,其中烟草铅的总吸收量降低了6.5%~44.0%,烟叶铅含量降低了3.1%~60.4%.施硅使烟草根、茎和叶中乙醇提取态、去离子水提取态和氯化钠提取态向盐酸提取态和残渣态转化,降低了烟草体内铅的毒性与迁移性.土壤-烟草系统中土壤向烟草根部的移动指数和根部向茎部的移动指数随施硅量的增加而降低,烟草茎部向叶部的移动指数随着施硅量的增加呈先增高后降低的趋势.硅通过降低土壤铅有效性、缓解铅对烟草的毒害、改变烟草体内铅的形态分布,进而抑制土壤中铅向烟草叶部的迁移,降低烟叶中的铅含量.施硅是降低土壤铅的迁移性及烟叶铅含量的有效措施.  相似文献   

10.
珠江三角洲典型肝癌高发区土壤锰形态及其生态效应   总被引:3,自引:0,他引:3  
通过对珠江三角洲典型肝癌高发区及低发区表层、深层土壤样品和作物样品的系统采集,分别对土壤中各化学形态Mn含量及其与土壤Mn全量、土壤理化性质、蔬菜Mn富集之间的相关关系进行研究.结果表明: 研究区土壤Mn主要来自成土母质,受人类活动影响很小,肝癌高发区土壤Mn平均含量为577.65 mg·kg-1,显著低于肝癌低发区(718.04 mg·kg-1)和全国土壤Mn平均含量(710 mg·kg-1);肝癌高发区土壤Mn以残渣态和铁锰态为主,水溶态和交换态等生物有效态含量较少,二者分配系数之和不超过4%,低发区土壤Mn形态分布也有相似的分布特征,但其绝对含量显著高于肝癌高发区.Mn全量负荷水平和pH对各形态Mn的含量有重要影响,尤其是铁锰结合态、腐植酸结合态、碳酸盐态和残渣态的含量与土壤Mn全量呈显著正相关;水溶态、有机态Mn与pH呈显著负相关.5类蔬菜中,肝癌高发区油麦菜和大白菜Mn含量及富集系数显著低于肝癌低发区,其它蔬菜品种无显著差异.Mn在蔬菜中的累积量与土壤中有效态Mn(水溶态Mn与离子交换态Mn之和)呈显著正相关,而与土壤Mn全量和其他形态均无显著相关性.  相似文献   

11.
We have studied in the laboratory the effect of different levels of P application on the transformation on native as well as of applied zinc in a rice-growing soil under two moisture regimes viz., flooded and nonflooded. Application of P caused a decrease in the water soluble plus exchangeable and organic complexed with a concomitant increase in the amorphous and crystalline sesquioxide bound forms of native soil zinc. Application of P also caused a decrease in the transformation of applied Zn into the water soluble plus exchangeable and organically complexed and an increase in the amorphous and crystalline sesquioxide bound forms of zinc. The above effects of P were more pronounced in soil under flooded than under nonflooded moisture regimes. The water soluble plus exchangeable and the organically complexed forms of Zn are considered to play an important role in Zn nutrition of lowland rice, while the role of the amorphous and crystalline sesquioxide bound forms are less important in this regard.The results of greenhouse experiments showed that P application caused a progressive decrease in the Zn concentration in shoot and root. This was attributed at least partly to the decrease in the water soluble plus exchangeable and organically complexed forms of Zn and an increase in the amorphous and crystalline sesquioxide bound forms in soil due to P application.  相似文献   

12.
Lignin is a primary byproduct from the black liquor treatment in paper making industries, its application as micro-fertilizer in agricultural land might provide a promising alternative to sewage discharge. However, application of such a micro-fertilizer might affect the soil properties and result in soil pollution. In this study, the effects of lignin application on phytoavailability and speciation change of heavy metals in soils were investigated. Greenhouse experiments showed that lignin application improved the growth of winter wheat (Triticum aestivum L.) in all three soils investigated. The increase of the biomass for wheat shoot was 59.7%, 39.8% and 12.3% for Beijing soil, Jiangxi soil and Dongbei soil, respectively. In contrast, lignin amendment decreased the concentrations of heavy metals in wheat shoots from 2.2% to 61.0%. Sequential extraction procedure of a three-step BCR was used to investigate the fraction distribution. The extractable fractions were specified as fraction B1: water soluble, exchangeable and carbonate bound or weakly specifically adsorbed; B2: Fe-Mn oxide bound; B3: organic matter and sulfide bound. The results showed that lignin application led to the redistribution of heavy metals in each fraction. Generally, heavy metals decreased in B1 and B2 fractions and increased in B3 fraction. Upon the results short-term application of lignin in agricultural land not only improves the growth of wheat but also reduces the phyto-abailability of heavy metal in wheat.  相似文献   

13.
Abstract

Concentrations of surface soil Zn and Cd from agricultural areas of the Henan Province were measured. About 234 soil samples were collected. Total metal analyses, sequential chemical fractionation which were divided into seven fractions according to the method of the Geological Survey Technical Standard (DD2005-03) set by the China Geological Survey were carried out on the samples. Total Cd and Zn concentrations of the topsoil were 0.1909 (0.1–0.549) and 63.07 (33.3–344.3) mg kg?1 respectively. Compared with the values permitted in China’s control standards for soil (GB 15618–1995) and background value in Henan Province, the soil samples showed high levels of Cd. The soil organic carbon has a significantly positive correlation with Cd and Zn concentration in the soil. Significant positive correlation between pH and Cd, Zn concentration was observed. On average, the order of Cd in each fraction was exchangeable, (27.3%)>weakly bound to organic matter; (22.7%)>strongly bound to organic matter; (16.4%)>residual; (15.1%)>carbonate; (12.1%)>Fe/Mn oxide bound; (4.5%)>water soluble; (2.0%), Zn was residual; (66.3%)>Fe/Mn oxide bound; (10.9%)> weakly bound to organic matter; (9.4%)> exchangeable; (6.0%)> strongly bound to organic matter; (3.9%)> carbonate (2.9%)> water soluble (0.6%). The accuracy of the sequential extraction was judged by the relative error (RE). RE for Cd ranged from 0 to 45% with a mean of 16.3%. RE for Zn ranged from 0.1 to 11.4% with a mean of 3.4%. On average, bioavailability index (BI) for Cd and Zn was 39.1% and 9.0% respectively. The mobility of the elements in the order Cd> Zn corresponds with the plant-availability of individual elements. Comparisons between activities of Cd2+ and Zn2+ calculated by Sauve semi-mechanistic equations and that of the water soluble fractions were demonstrated. The activities of Cd2+ and Zn2+ calculated by the semi-empirical equation are lower than its water soluble fraction.  相似文献   

14.
A study was conducted to assess the retention form of arsenic in soil and to evaluate the use of phosphate for releasing it from the soil. In this study, a loam soil was artificially polluted with arsenate at pH 5.5, which is one of the pH values at which maximum arsenic adsorption occurred. The soil was kept for 2.5 months under wet conditions to allow for stabilization. The soil was maintained under aerobic condition and losses of arsenic by volatilization were determined to be minimal. The soil was then sequentially extracted with a series of chemicals to identify the soil fractions in which the arsenic was bound. The percentage of arsenic found in the Fe bound-exchangeable, reducible-residual, Al bound exchangeable, residual, calcium bound exchangeable, and easily exchangeable forms was 31.6, 27.3, 25.2, 5.5, 4.9, and 4.7%, respectively. A batch experiment showed that at 20°C, 80% of the bound arsenic was removed by phosphate in the pH range of 5 to 7. A power function model was found to fit the data with a desorption rate constant of 402?mg/kg As h?1.  相似文献   

15.
Two kinds of soil study were carried out in the south-western Tibet region of China. Changes in soil properties with elevation were examined from the snout of a glacier at 5450 m above sea level down to a village (Burang) at 3900 m. The area close to the glacier was devoid of vegetation, probably because of the coldness. With a decrease in elevation, the landscape changed from desert to sparseArtemisia steppe, and below 4750 m, to a thorn-bush steppe dominated byCaragana spp. which continued down to the village (where the annual precipitation was 169 mm). Organic C, total N and cation exchange capacity (CEC) all increased with decreasing elevation down to 4700 m due to the increase in warmth, but the parameters decreased below 4700 m, reflecting the increase in aridity. Almost no carbonate was detected in areas above 4700 m, but below this elevation it increased exponentially, also reflecting the increase of aridity. Available P tended to decrease with both the decrease in elevation and the increase in carbonate. The vertical distribution of soil parameters was investigated in the soil profiles of dry and wet plots at 4700 m. Organic C, total N, and CEC decreased with increasing soil depth. Their values were higher in the dry plot than in the wet plot. In the dry plot, carbonate increased with depth. Total P was found to be similar in both the wet and dry plots, but there was less available P in the soil of the dry plot, reflecting the abundance of calcium carbonate.  相似文献   

16.
Effect of Watering and Soil Moisture on Mercury Emissions from Soils   总被引:6,自引:0,他引:6  
This paper presents data from experiments that measured Mercury (Hg) flux as a function of water addition and subsequent soil drying, and maintenance of soil water content over time utilizing small dynamic gas exchange chambers and large mesocosms. When soil surfaces were dry and water was added at an amount less than that necessary to saturate the soil an immediate large (relative to dry soil flux) release of Hg occurred. Diel Hg emissions from soils, unenriched (0.02 μg g−1) and enriched (3 μg g−1) in Hg and wet below saturation, were significantly elevated above that occurring from dry soils (2–5 times depending on soil water content) for weeks to months. Enhancement of emissions from wet soils in direct sunlight were greater than that from soils shaded or in the dark suggesting that a synergism exists between soil moisture and light. When soils were watered to saturation Hg emissions were suppressed or remained the same depending on the degree of saturation. It is hypothesized that the addition of soil water in amounts less than that necessary to saturate the soil surface results in an immediate release of elemental Hg from soil surface as the more polar water molecule out competes Hg for binding sites. As the water moves into the soil, Hg adsorbed to soil particles is desorbed into soil gas and dissolved in the soil water. The process of evaporation facilitates movement of Hg as mass flow to the soil surface where it is made available for subsequent release. The latter is hypothesized to be an important process by which Hg is recharged at the soil–air interface.  相似文献   

17.
Forage barley dry matter yield and quality, as well as soil pH, Al, and Mn were monitored in response to P, K, and lime application on a newly cleared Typic Cryorthod (Orthid Podzol). The overall yearly yield level was affected by precipitation. Without liming soil acidification occurred after three years of production. The liming rate of 2.2 Mg.ha−1 was found optimal for maintaining initial pH levels (5.66) and increasing forage barley yields. It was also found optimum for K and P utilization for these first years of production. Soil pH dropped an average of 0.33 units over the three years on unlimed P plots and 0.46 units over 4 years on K plots. Phosphorus and K fertilization increased N utilization and resulted in decreased soil acidification. Phosphorus availability was greater in the first year of cropping than in subsequent years, this was likely due to the effects of higher available moisture, liming release of native P, and effects of initial fertilization. There was a 148% increase in total dry matter yield and an 85% increase in protein yield of forage barley with P application. Liming increased total forage barley yields an average of 69% and total protein yields 48%. Reduced barley yields in unlimed plots were due to low soil pH. After two years of cultivation, unlimed plots contained exchangeable Al and soluble Mn levels reported toxic for other soils. The higher liming rates of 4.4 and 6.6 Mg.ha−1 reduced soluble Mn to near critically low levels. soil Al and Mn were highly correlated to pH. Soil exchangeable Al, Mn, and soluble Mn along with tissue Al were inversely correlated to percentage yield. The average yield respone to three levels of applied K, increased from zero initially to 67% by the fourth year. Total dry-matter production increased 32% and total protein yield increased an average of 32% and total protein yield increased an average of 15% with K fertilization over four years. About 60% of the yield response occurred between the 0 and 22kg K.ha−1 rates. Initial soil exchangeable K levels were not maintained even at the highest 66kg K.ha−1 treatment. Soil exchangeable Al and soluble Mn were elevated with dropping pH. Soil K reserves and resupply of exchangeable K in these soils over the long term will be an important factor in crop production.  相似文献   

18.
盐城海滨湿地景观演变关键土壤生态因子与阈值研究   总被引:2,自引:0,他引:2  
文章以盐城海滨湿地典型区域为案例,以2011年4月和2012年4月对海滨湿地土壤数据为基础,结合2011年ETM 遥感影像,运用灰色关联分析、线性回归模拟和地统计学方法,辨识海滨湿地景观演变的关键生态因子,并确定其生态阈值。得出基本结论如下:(1)海滨湿地土壤理化性质海陆差异明显:从米草沼泽—碱蓬沼泽—芦苇沼泽,土壤水分和盐度表现出递减的趋势;土壤有机质、营养盐总体上从米草沼泽—碱蓬沼泽—芦苇沼泽,表现出两头高中间低的特征;湿润年份土壤水分高于干旱年份,湿润年份土壤盐度低于干旱年份。(2)灰色关联分析表明:干旱年份,水分>盐度>铵态氮>速效钾>有机质>有效磷;湿润年份为:盐度>水分>有效磷>铵态氮>速效钾>有机质,因此把土壤水分和盐度确定为海滨湿地景观演变的关键生态因子。(3)土壤水分和盐度在东西海陆方向上的变异大于南北海岸延伸方向上的变异。(4)将景观类型图和海滨湿地土壤水分与盐度分异图叠加分析,得出:芦苇滩土壤水分阈值<42.332%,盐度阈值<0.745%;碱蓬滩土壤水分阈值为38.836%~46.593%,盐度阈值为0.403%~1.314%;米草滩土壤水分阈值>39.475%,盐度阈值>0.403%;光滩的土壤阈值>41.550%,盐度阈值>0.656%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号