首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
基于WinEPIC和偏最小二乘回归模型对1981—2016年陕西不同区域成龄苹果林的水分生产力影响因子和土壤水分动态进行比较.结果表明: 研究期间,陕北丘陵沟壑区、渭北残塬区和关中平原区成龄苹果林年均产量分别为16.94、22.62和25.70 t·hm-2,年均蒸散量分别为511.2、614.9和889.88 mm,水分生产力分别为3.81、3.82和3.24 kg·m-3.在陕北区和渭北区,林地水分胁迫最严重,年均胁迫天数分别为54.89、28.38 d,关中区的N素胁迫较为剧烈,年均胁迫天数为25.87 d.陕北区和渭北区影响苹果林产量的最大因子是降水量,其标准化回归系数分别为0.274和0.235,但施N量对产量也有较大影响,回归系数分别达0.224和0.232;关中区的最大影响因子为施N量,回归系数为0.335,其次是供水量和施P量,回归系数分别为0.154和0.147.陕北区和渭北区影响苹果林水分生产力的最大因子是降水量,其标准化回归系数分别0.238和0.194;关中区最主要的影响因子为施N量和供水量,回归系数分别为0.182和0.178.在模拟期间,陕北区、渭北区和关中区苹果林地的过耗水总量分别为1152.17、1342.95和1372.42 mm,2~15 m土层土壤有效含水量下降速率分别为63.44、57.08、51.41 mm·a-1,深层土壤干层出现时间分别为8、13和17年后,干层稳定至11 m深的时间分别为18、21和26年,干燥化严重.不同区域苹果林的管理重心应参考水分生产力的主导因子确定.  相似文献   

2.
陕北黄土区雨季后山地枣林土壤水分动态变化研究   总被引:1,自引:0,他引:1  
选取陕北延川县齐家山红枣试验基地枣林地、苹果林地和撂荒草地为研究对象进行土壤水分动态变化研究,结果表明:①不同坡位、不同坡向和不同整地方式的枣林地土壤水分存在显著差异;其中,研究区下坡位土壤水分最高,为14.19%;阴坡土壤水分最高,为14.19%;水平阶整地枣林土壤水分显著高于原状坡。②研究区不同植被类型间土壤水分垂直变化趋势基本一致。枣林地土壤水分最高,为11.49%;不同植被类型0~100 cm土壤贮水量依次表现为枣林地(144.76 mm) > 苹果林地(124.19 mm) > 撂荒草地(72.20 mm)。③不同植被类型土壤贮水亏缺度存在差异。雨季前,0~20 cm土层亏缺度最小,平均亏缺度表现为撂荒草地 > 枣林 > 苹果林;雨季后,土壤水分亏缺度表现为撂荒草地 > 苹果 > 枣林,除枣林地外均高于雨季前土壤水分亏缺度。④雨季后,研究区3种植被类型0~20 cm土层土壤水分亏缺加剧;20~100 cm土层中,枣林土壤贮水补偿度为正值,土壤水分得到补偿,但最高仅为22.95%,枣林土壤水分仍处于亏缺状态并未完全恢复;苹果林地土壤贮水补偿度则为负值,表明土壤水分亏缺进一步加剧;撂荒草地土壤水分补偿度基本维持在0左右,土壤水分亏缺没有持续恶化。  相似文献   

3.
渭北旱塬小麦产量和土壤水分对保护性耕作的响应模拟   总被引:2,自引:0,他引:2  
在模拟精度验证基础上,应用WinEPIC模型长周期定量模拟研究了1980—2009年渭北旱塬连作麦田夏闲期深松、免耕和翻耕等保护性耕作对冬小麦产量和土壤水分的影响.结果表明:在30年模拟研究期间,不同耕作方式下渭北旱塬冬小麦产量和年度耗水量呈波动性下降趋势,深松处理产量和水分利用效率最高,30年平均值分别为3.33 t·hm-2和8.50kg·hm-2·mm-1,其次为翻耕,免耕效果最差;深松处理麦田年度耗水量稍高于免耕和翻耕,冬小麦田0~3 m土层土壤有效含水量呈现强烈的季节性波动降低趋势,免耕处理蓄水保墒效果最好,0~3 m土层土壤有效含水量平均为89.5 mm,深松次之,翻耕最差.麦田0~1 m土层土壤湿度随季节降水呈波动性变化,1~3 m土层土壤湿度较为稳定,不同耕作处理间差异不大.长期连作小麦田深松处理的产量和水分综合效应最好,为渭北旱塬麦田最适宜的保护性耕作模式.  相似文献   

4.
陇东黄土旱塬作物组合系统农田耗水规律研究   总被引:11,自引:3,他引:8  
本文根据1988-1991年陇东黄土旱塬作物组合模式(即作物轮作与复种模式)田间试验土壤水分测定资料,对作物组合系统中主要组分作物田间耗水量及其构成特征、变异规律及农田土壤水分的利用程度进行了研究,并探讨了不同作物组合系统的田间耗水量及其构成特征。结果表明,不同作物组合系统的田间耗水量及其构成特征存在明显差异;作物田间耗水量是一个动态变量,因作物种类、降水年型等不同而异,并与生育期有效降水量呈显著正相关;来自播前土壤有效储水的土壤供水量对秋播作物冬小麦和冬油菜生育期水分不足有重要补偿作用,是维持其较高的生产稳定性的关键原因;无论丰水年还是欠水年,冬小麦、玉米、谷子和马铃薯4种主要作物在农田水分利用程度上均存在一定差异。  相似文献   

5.
渭北旱塬苹果园不同水肥管理模式下的土壤水分差异   总被引:1,自引:0,他引:1  
为了探究渭北旱塬苹果园不同水肥管理模式下的土壤水分差异,于2013-2016年在地处渭北旱塬的陕西省白水县田家洼村进行了田间试验,设置了3个不同果园水肥管理方式:农户模式(单施化肥,FM)、现有模式(推荐施肥配合地膜覆盖,EM)、优化模式(有机无机肥配施配合双元覆盖,OM),并对0~300 cm土层土壤水分进行了测定.结果表明: 优化模式可以显著提高0~200 cm土层土壤贮水量,0~100 cm土层土壤含水量在干旱季节较农户模式和现有模式分别增加5.6%和15.3%,优化模式200~300 cm土层土壤水分相对亏缺指数低于现有模式,在干旱年份可以提高降雨入渗,降雨入渗达到300 cm,同时优化模式可以提高果园0~300 cm土层土壤降水补充量,稳定土壤水分变化,有效缓解了深层土壤干燥化程度.优化模式4年平均产量较农户模式和现有模式分别提高36.6%和22.5%.综上,优化模式可以通过提高土壤有效含水量,改善浅层和深层水分状况,提升土壤水分利用效率,在提高产量的同时,缓解土壤深层干燥化程度.  相似文献   

6.
选择黄土高原旱作区8个冬小麦测站2m土层深度多年土壤贮水量与产量资料,从大气降水-土壤水-作物循环系统的理论观点出发,研究了土壤贮水力和农田耗水量对冬小麦水分生产力的影响。该区域是一个贮水和保水性能良好的天然土壤水库,半干旱区、半湿润区、湿润区1m和2m土层内最大贮水力分别为270、299、331mm和561、605、676mm,随湿润度增加而增大;但实际贮水能力只有111、183、269mm和230、370、550mm,相当于半干旱区、半湿润区和湿润区最大贮水力的41%、61%和81%,可达到最适宜贮水量的51%、76%、102%。半干旱区远不能满足冬小麦生长需要,达到严重干旱程度;半湿润区只能勉强维持生存需要,达到轻度干旱,必须采取一套有效保墒耕作抗旱措施。冬小麦全生育期2m土层农田实际耗水量和蒸腾系数分别为304-343mm和330-648,随干旱程度增加而增大。冬小麦全生育期降水量只能满足耗水量的65%-95%,有5%-35%的耗水量是从播前土壤贮水量补给的。冬小麦营养生长阶段浅层耗水量大于生殖阶段,但深层耗水量正好相反。土壤贮水量是该区域冬小麦生产力最重要因素,冬小麦土壤水分籽粒生产力为0.30-1.38kg/mm,平均为0.87kg/mm,生物产量生产力为1.416kg/mm,随干旱程度增大明显递减。旱作区冬小麦水分生产力低而不稳,但潜力很大。必须在肥力、耕作、管理等措施要跟上,水分生产力水平才能提高。  相似文献   

7.
黄土旱塬区冬小麦土壤水库动态   总被引:3,自引:0,他引:3  
李鹏展  王力  王棣 《生态学杂志》2017,28(11):3653-3662
土壤水库是旱作农业区粮食稳产和可持续发展的基础.本文结合长期田间定位试验,通过对黄土高原南部长武旱塬2012—2015年冬小麦土壤水分变化的研究,分析了土壤水库的年际与年内变化特征和动态规律.结果表明: 研究区冬小麦田间平均土壤含水量垂直分布曲线均呈“双峰双谷”形,第1处峰点在10~20 cm土层,第1处谷点在50 cm左右,第2处峰点在100 cm左右,第2处谷点在280 cm左右.无论何种降水年型下,土壤水库对降水的响应滞后且滞后的程度一致.降水年型对土壤水库的年际与年内动态变化影响较大.与丰水年相比,枯水年、平水年土壤水库对大气干旱的调节能力降低,表现为主要供水层上移;枯水年、平水年降水量虽少,但对土壤水分的补充作用较丰水年明显;丰水年土壤水库有较大盈余(84.2 mm),水分平衡出现正补偿,枯水年土壤水库稍有亏缺(1.5 mm),水分平衡出现负补偿,平水年土壤水库稍有盈余(9.5 mm),水分平衡出现正补偿.长武旱塬冬小麦田间土壤水分动态可分为4个时期:苗期耗水期、缓慢消耗期、大量消耗期、收获期,整体蒸散耗水大小顺序为:大量消耗期>苗期耗水期>收获期>缓慢消耗期.  相似文献   

8.
不同覆盖施肥措施对黄土旱塬冬小麦土壤水分的影响   总被引:14,自引:0,他引:14  
于2007年9月—2008年7月在位于黄土高原渭北旱塬的王东沟试验区进行冬小麦不同覆盖施肥措施(包括不施肥、农民习惯施肥、推荐施肥、推荐施肥+有机肥、推荐施肥+垄上覆膜、推荐施肥+垄上覆膜+沟内覆草、推荐施肥+全区覆草7个处理)田间试验,并采用水分中子仪定期观测土壤含水量,研究黄土高原旱塬区不同栽培措施下土壤水分的变化特征.结果表明:在干旱季节(春季),推荐施肥+垄上覆膜+沟内覆草措施有利于贮存更多的土壤水分,其土壤储水量约比最低值(推荐施肥+有机肥)高48.2 mm,并可将土壤水分保持到冬小麦需水的关键期,而且推荐施肥+垄上覆膜措施仅次于推荐施肥+垄上覆膜+沟内覆草,表明这两种措施能够在田间蓄积较多天然降水,有利于黄土高原旱区雨养农业的发展.  相似文献   

9.
渭北旱塬苹果园地产量和深层土壤水分效应模拟   总被引:8,自引:0,他引:8  
张社红  李军  王学春  王亚莉 《生态学报》2011,31(13):3767-3777
为了研究实时气象条件下渭北旱塬不同生长年限苹果园地产量变化趋势和深层土壤水分变化规律,在模型适用性与模拟精度验证基础上,应用WinEPIC模型模拟研究了1962—2001年期间洛川旱塬苹果园地产量演变动态和深层土壤水分效应。结果表明:(1) 在模拟研究期间,洛川旱塬4—40年生苹果园产量整体上呈波动性下降趋势,初期产量逐渐增加,11—23年生达到最大值(平均为28.8 t/hm2),之后随降水量年际波动呈现出明显的波动性降低趋势。(2) 40年间苹果园地遭受的干旱胁迫日数呈波动性上升趋势,与年降水量波动趋势相反。(3) 1—15年生期间苹果园地平均年耗水量高于同期年降水量,导致苹果园地0—10 m土层土壤强烈干燥化,逐月土壤有效含水量波动性降低,1—10年生、11—20年生和21—40年生期间发生土壤干燥化并且程度逐渐加剧,但干燥化速率逐渐减缓,土壤干燥化速率分别为95.4 mm/a、12 mm/a和1.5 mm/a。(4) 随生长年限的延长,苹果园地0—10 m土层土壤湿度逐渐降低、土壤干层分布深度逐渐加大,在14年生时超过了10 m,20年生以后2—10 m 土层形成稳定的土壤干层。因此,基于土壤水分利用的苹果生长与果园利用的合理年限为20 a,最长不宜超过23 a。  相似文献   

10.
黄土高原丘陵沟壑区小流域植被净第一性生产力模型   总被引:9,自引:3,他引:6  
许红梅  贾海坤  黄永梅 《生态学报》2005,25(5):1064-1074
构建了机理性植被净第一性生产力模型(Vegetation—Soil—Integrated—Model,VSIM)。该模型将土壤水分动态过程与植被生长过程相耦合,用以分析黄土高原丘陵沟壑区土壤水分对植被生产力的影响。模型考虑了叶片尺度上气孔导度对净光合过程和蒸腾过程的影响,在此基础上通过考虑植被冠层结构和地形因素的影响对模型进行尺度转换,并以位于黄土高原丘陵沟壑区纸坊沟流域的观测数据对模型进行参数化和验证。结果表明对于生物量的模拟草本和半灌木比乔、灌木好.主要植被类型LAI的季节变化与观测结果具有很好的一致性,模型能够反映出流域降雨一产流过程,并且基本上也能够反映土壤水分的时空变化范围。模拟结果表明,刺槐林和苹果林属于高光合一低蒸腾类型,农作物、白羊草群落和达乌里胡枝子群落属于高光合一高蒸腾类型,铁杆蒿群落和茭蒿群落属于低光合一低蒸腾类型,而沙棘灌丛和柠条灌丛的净第一性生产力居中,但蒸腾量较高。流域内土壤水分在多年序列上基本平衡,而在不同的水文年表现出失衡。其中刺槐林、苹果林和沙棘灌丛的多年平均土壤水分在年内存在少量亏缺,铁杆蒿群落和茭蒿群落略有增加,而其它植被类型基本保持平衡。丰水年不同植被类型土壤含水量都明显高于欠水年,土壤水分含量的变化在丰水年表现为盈余,而在欠水年表现为明显的亏缺。  相似文献   

11.
黄土高原苹果园土壤水分及水分生产力模拟   总被引:1,自引:0,他引:1  
以长武地区为例,采用WinEPIC模型模拟1980—2018年间黄土高原旱作苹果园地深剖面土壤水分和水分生产力变化动态,以期为该区苹果产业的可持续发展提供科学依据。结果表明: 长武地区苹果园年均产量为26.37 t·hm-2,年均蒸散量为673.66 mm,年均水分生产力为4.07 kg·m-3,成龄果树水分胁迫天数主要受降雨量影响,果树生长后期年均胁迫天数为46.46 d,深层土壤含水量最早于9龄果树开始接近凋萎湿度。长武地区苹果整个生长周期内供水量是对果园产量影响最大的因素,深层土壤有效水含量降低是制约果树生长中后期产量提高的最主要因素,在降水不足的年份果树会利用更深层土壤水分。当深层土壤可利用水分较少时,过多的降水并未被果树利用,而是转化为浅层土壤水分蒸发。对于成龄果树在年供水量低于500 mm或高于700 mm时都会造成产量的下降。针对不同生长时期的果园,在不同的降雨年份应该调整果园水分管理策略,可以通过补充灌溉、拦蓄集聚雨水、覆盖、修剪枝条等管理措施,降低果树非生产性耗水及自身奢侈性耗水,延缓深层土壤干层的出现时间,在保证果树生长的同时避免水资源的浪费。  相似文献   

12.
杨开宝  刘国彬    吴发启  孙宝胜   《生态学报》2008,28(5):2042-2042~2051
从流域产流规律及水土保持措施改变引起的土壤水分状况和流域蒸散发的变化等方面评价了黄土丘陵沟壑区泉家沟流域水土保持措施变化对流域水分生态环境的影响.结果表明:水土保持与生态建设过程改变了土地利用结构,对小流域水环境变迁具有很大的影响作用,主要表现在:减少地表径流量,径流模数1996~2000年平均较1980~1985年减少了36.1%;不同治理措施土壤水分状况不同,灌木林地、人工草地和乔木林地均存在深度和厚度不等的土壤"干层";不同地貌部位土壤储水差异很大,阴坡的水分环境优于阳坡,沟底优于峁顶,缓坡优于陡坡;林草措施对流域总蒸散量起着决定性作用,1991~1995年流域林草地面积达到最大,总蒸散量也达到最大,与治理初期相比,总蒸散量累计增加了56.3 mm.  相似文献   

13.
为探明黄土高原地区旱作苹果园深层土壤干燥化效应和生产水足迹动态变化,选择半湿润区洛川和半干旱区米脂两个典型苹果种植区,采用WinEPIC模型定量模拟分析两个区域1980—2020年旱作苹果园0~15 m土壤水分动态变化和苹果生产水足迹演变规律。结果表明: 洛川和米脂成龄果园年产量大致呈“S”型趋势变化,年均值分别为24.64和18.42 t·hm-2;年均蒸散量分别为623.82和458.97 mm,年均干旱胁迫日数分别为20.4和52.73 d,年均水分过耗量分别为167.94和121.15 mm。洛川1~25龄、米脂1~23龄果树土壤有效含水量下降趋势明显,土壤干燥化速率分别为64.6和68.03 mm·a-1;洛川和米脂深层土壤干层形成的时间为第13年和第7年,并分别于第23年和第22年后达到稳定,降水量高的地区形成和达到稳定土壤干层的时间较晚,如果土壤水分长期处于亏缺状态,最终会形成不可逆转的土壤干层。洛川和米脂苹果生产水足迹均呈前期低后期高的特征,年均生产水足迹值分别为0.187和0.194 m3·kg-1。苹果产量和生产水足迹受降水影响,在水资源短缺的黄土高原地区,为了苹果产业能够持续健康发展,建议苹果树最佳种植年限为23年左右,最多不应超过25年。  相似文献   

14.
黄土高原降水年内分布差异对旱作果园蒸散特征的影响   总被引:1,自引:0,他引:1  
天然降水是雨养农业区水文循环的主要驱动因子,在一定程度上决定着土壤水分生态环境,从而影响作物的蒸散特征。本研究通过分析静宁地区历年降水年内分布特征,明确了降水的集中趋势,在2018和2019年田间定位试验基础上,探究土壤水分随降水发生的变化过程以及果园蒸散特征对降水年内分布差异的响应规律。结果表明: 试验区历年降水集中度较高,集中期多分布在7和8月,8月所占比例达75%,且各年降水集中期出现的早晚变化较大。土壤水分对降水的响应主要集中在0~40 cm土层,深层水分只有在大雨量和连续性降水出现时才会发生明显变化。同为丰水年的情况下,2018年降水集中度高,集中期早,时间短,果树日耗水强度呈单峰结构,变幅较大;2019年降水分布均匀,集中期滞后,日耗水强度呈双峰结构,变幅小,大峰靠后。果树最大需水期历时长,2018年大雨的集中分布无法满足后期果树生理需水,果实产量受损,降水利用效率较2019年下降30.2%。黄土高原地区在苹果树幼果生长期往往会出现短暂干旱,影响果实品质,需加强该时段的水分管控。  相似文献   

15.
渭北旱塬苹果园土壤深层干燥化与硝酸盐累积   总被引:23,自引:3,他引:20  
以渭北旱塬的苹果园为研究对象,对5~34龄苹果园土壤剖面水分含量分布与硝酸盐累积状况进行研究.结果发现,旱地苹果园的高投入与高产出经营方式不但导致了土壤深层干燥化,而且土壤深层累积了大量的硝态氮,累积层在40~260cm土层,最高含量达403.4mg·kg^-1.由于连续施氮肥,这些氮素被再利用的可能性很小,存在土体中的硝态氮会造成潜在的环境问题.由于土壤深层水对干旱的调节作用减弱或丧失,导致苹果产量受控于当季节降水.因此,应当控制苹果园施氮量,避免氮素的大量累积,并采取措施改善果园水分状况。  相似文献   

16.
黄土高原退耕还林(草)工程实施20年来,长期苹果种植导致了普遍的土壤干层和大量的硝态氮累积,严重制约了农业和区域经济可持续发展。因此,明确不同树龄苹果园改种粮食作物后对深层土壤干层恢复(土壤水分变化)、土壤硝态氮累积与运移的影响,对于黄土高原土壤质量改善和农业可持续发展具有重要意义。以渭北旱塬为研究区,选取10、15、20、30 a树龄的苹果园以及对应树龄苹果园改种为2、5 a和6 a粮食作物为研究对象,通过对比分析各样地0—10 m剖面的土壤含水量、土壤储水量和硝态氮含量的差异,基于空间换时间的方法定量评估苹果园改种为粮食作物后对于深层土壤水氮的影响。结果表明:(1)不同林龄苹果园改种粮食作物后土壤水分迅速恢复,在2年之内均可恢复到7.0 m左右深度。(2)改种后土壤储水量对于改种后土壤硝态氮累积量的直接影响最显著,不同林龄苹果园改种粮食作物后,土壤剖面中硝态氮随着土壤水分的恢复发生了不同程度的淋失。改种前苹果园种植年限对于改种后土壤硝态氮累积量起决定性作用,改种前林龄越长,改种后硝态氮累积量越大、淋失深度越浅。(3)土壤累积硝态氮的淋失滞后于土壤水分的向下运动。可见,不同林龄苹果园...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号