首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
We studied female preferences for familiar and unfamiliar males. The subjects were laboratory-born house mice: (1) non-commensal Mus musculus domesticus from the eastern part of Syria along the Euphrates River; and (2) commensal M. m. musculus from the Czech Republic. Pair-choice preference tests have revealed that oestrous females of both populations sniffed towards unfamiliar males more than familiar males. In the case of females exhibiting postpartum oestrus, this preference was less pronounced and statistically not significant. Thus, our mice clearly exhibited the behavioural pattern known from commensal populations of polygynous and/or promiscuous M. m. domesticus. We found no inverse tendency to seek proximity to the familiar male that has been previously reported from closely related and presumably monogamous aboriginal mouse Mus spicilegus. We conclude that neither commensal M. m. musculus, nor non-commensal M. m. domesticus, are likely to share a monogamous mating system with mound-building mice.  相似文献   

2.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

3.
Copy numbers and variation of a clustered long-range repeat family on Chromosome (Chr) 1 have been studied in different species of the genus Mus. The repeat sequence was present in all, as inferred from cross-hybridization with probes derived from the Mus musculus repeat family. Copy numbers determined by dot blot hybridization were very low, from three to six per haploid genome in M. caroli, M. cervicolor, and M. cookii. These species form one branch of the phylogenetic tree in the genus Mus. In the other group of phylogenetically related species—M. spicilegus, M. spretus, M. musculus and M. macedonicus—copy numbers ranged from 6 to 1810 per haploid genome. The repeat cluster is cytogenetically visible as a fine C-band in M. macedonicus and as a C-band positive homogeneously staining region (HSR) in several populations of M. m. domesticus and M. m. musculus. When cytogenetically visible, the clusters contained from 179 to 1810 repeats. Intragenomic restriction fragment length polymorphisms (RFLPs), which reflect sequence variation among different copies of the long-range repeat family, increased with higher copy numbers. The high similarity of the RFLP pattern among genomes with C-band positive regions in Chr 1 of M. m. musculus, M. m. domesticus, and M. macedonicus points to a close evolutionary relationship of their Chr 1 repeat families.  相似文献   

4.
Mouse chromosomes, with the exception of the Y chromosome, are telocentric. The telomere at the p-arm is separated from the centromere by the tL1 sequence and TLC tandem repeats. A previous report showed that the TLC array was also conserved in other strains of the subgenus Mus. These results suggest that the TLC arrays promote the stable evolutionary maintenance of a telocentric karyotype in the subgenus Mus. In this study, we investigated the degree of conservation of TLC arrays among a variety of wild-derived inbred strains, all of which are descendants of wild mice captured in several areas of the world. Genomic PCR analysis indicates that the sequential order of telomere-tL1 is highly conserved in all strains, whereas tL1-TLC is not. Next, Southern blot analysis of DNAs isolated from a panel of mouse subspecies showed both Mus musculus domesticus and Mus musculus castaneus subspecies possess TLC arrays. Unexpectedly, this repeat appears to be lost in almost all Mus musculus musculus and Mus musculus molossinus subspecies, which show a clear geographic divide. These results indicate that either other unknown sequences were replaced by the TLC repeat or almost all M. m. musculus and M. m. molossinus subspecies do not have any sequence between the telomere and minor satellites. Our observation suggests that the TLC array might be evolutionarily unstable and not essential for murine chromosomal conformation. This is the first example of the subspecies-specific large genome alterations in mice.  相似文献   

5.
We investigated the distributions and routes of colonization of two commensal subspecies of house mouse in Norway: Mus musculus domesticus and M. m. musculus. Five nuclear markers (Abpa, D11 cenB2, Btk, SMCY and Zfy2) and a morphological feature (tail length) were used to differentiate the two subspecies and assess their distributions, and mitochondrial (mt) D‐loop sequences helped to elucidate their colonization history. M. m. domesticus is the more widespread of the two subspecies, occupying the western and southern coast of Norway, while M. m. musculus is found along Norway’s southeastern coast and east from there to Sweden. Two sections of the hybrid zone between the two subspecies were localized in Norway. However, hybrid forms also occur well away from that hybrid zone, the most prevalent of which are mice with a M. m. musculus‐type Y chromosome and an otherwise M. m. domesticus genome. MtDNA D‐loop sequences of the mice revealed a complex phylogeography within M. m. domesticus, reflecting passive human transport to Norway, probably during the Viking period. M. m. musculus may have colonized earlier. If so, that leaves open the possibility that M. m. domesticus replaced M. m. musculus from much of Norway, with the widely distributed hybrids a relict of this process. Overall, the effects of hybridization are evident in house mice throughout Norway.  相似文献   

6.
Numerous studies have shown an association between aggressiveness and several other behavioural traits. For example, more aggressive animals were bold and active explorers tending to form persistent routines whereas less aggressive animals were shy, careful but more flexible. While the former are thought to be more successful under stable conditions the latter should have advantages in more dynamic situations. These differences can apply not only to individuals but also to populations, species or groups of species with important implications to species distributions and speciation rates. Here we utilized the Morris water task (MWT) to investigate how two subspecies, Mus musculus musculus and M. m. domesticus, known to differ in aggressiveness, cope with stressful situations. We found that less aggressive musculus males performed significantly better in solving the MWT than more aggressive domesticus males. This suggests that M. m. musculus is more flexible and could be more successful under stressful and/or dynamic situations typical of dispersal bouts. It seems plausible that this difference may have had an influence on the secondary contact between musculus and domesticus populations in the past and perhaps still can affect the dynamics of the European hybrid zone between the subspecies. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 310–319.  相似文献   

7.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

8.
9.
Genetic differentiation of six subspecies of the house mouse Mus musculus (Mus musculus musculus, M. m. domesticus, M. m. castaneus, M. m. gansuensis, M. m. wagneri, and M. m. ssp. (bactrianus?) was examined using RAPD-PCR analysis. In all, 373 loci of total length of about 530 kb were identified. Taxonspecific molecular markers were detected and the levels of genetic differences among the subspecies were estimated. Different degree of subspecific genetic differentiation was shown. The most similar subspecies pairs were M. m. castaneus-M. m. domesticus and M. m. musculus-M. m. gansuensis. In our phylogenetic reconstruction, M. m. wagneri proved to be most different from all the other subspecies. Genetic distances between it and other subspecies were two-to threefold higher than those between the “good”species of the subgenus Mus (e.g., between M. m. musculus and M. spicilegus, M. musculus and M. abbotti). The estimates of genetic similarity and the phylogenetic relationships between six house mouse subspecies inferred from RAPD partially conformed to the results based on cytogenetic and allozyme data. However, they were considerably different from phylogenetic reconstructions based on sequencing of the control mtDNA region, which reflects mutual inconsistency of different systems of inheritance.  相似文献   

10.
Faroe house mice are a ‘classic’ system of rapid and dramatic morphological divergence highlighted by J. S. Huxley during the development of the Modern Synthesis. In the present study, we characterize these charismatic mice using modern molecular techniques, examining specimens from all Faroe islands occupied by mice. The aims were to classify the mice within the modern house mouse taxonomy (i.e. as either Mus musculus domesticus or Mus musculus musculus) using four molecular markers and a morphological feature, and to examine the genetic diversity and possible routes of colonization using mitochondrial (mt) control region DNA sequences and microsatellite data (15 loci). Mice on the most remote islands were characterized as M. m. domesticus and exhibited exceptionally low genetic diversity, whereas those on better connected islands were more genetically diverse and had both M. m. musculus and M. m. domesticus genetic elements, including one population which was morphologically M. m. musculus‐like. The mtDNA data indicate that the majority of the mice had their origins in south‐western Norway (or possibly southern Denmark/northern Germany), and probably arrived with the Vikings, earlier than suggested by Huxley. The M. m. musculus genetic component appears to derive from recent mouse immigration from Denmark. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 471–482.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号