首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This study examined the effects of dietary alpha-linolenic acid deficiency followed or not by supplementation with phospholipids rich in n;-3 polyunsaturated fatty acid (PUFA) on the fatty acid composition of total phospholipids in 11 brain regions. Three weeks before mating, mice were fed a semisynthetic diet containing both linoleic and alpha-linolenic acid or deficient in alpha-linolenic acid. Pups were fed the same diet as their dams. At the age of 7 weeks, a part of the deficient group were supplemented with n;-3 polyunsaturated fatty acids (PUFA) from either egg yolk or pig brain phospholipids for 2 months. Saturated and monounsaturated fatty acid levels varied among brain regions and were not significantly affected by the diet. In control mice, the level of 22:6 n-3 was significantly higher in the frontal cortex compared to all regions. alpha-Linolenic acid deficiency decreased the level of 22:6 n-3 and was compensated by an increase in 22:5 n-6 in all regions. However, the brain regions were affected differently. After the pituitary gland, the frontal cortex, and the striatum were the most markedly affected with 40% reduction of 22:6 n-3. Supplementation with egg yolk or cerebral phospholipids in deficient mice restored a normal fatty acid composition in brain regions except for the frontal cortex. There was a regional distribution of the fatty acids in the brain and the impact of deficiency in alpha-linolenic acid was region-specific. Dietary egg yolk or cerebral phospholipids are an effective source of n-3 PUFA for the recovery of altered fatty acid composition induced by a diet deficient in n-3 PUFA.  相似文献   

2.
Rats fed a semipurified diet supplemented with 3% (w/w) safflower oil [Saf, n-3 fatty acid deficient, high linoleic acid (18:2n-6)] through two generations exhibit decreased correct response ratios in a brightness-discrimination learning test compared with rats fed 3% perilla oil [Per, high alpha-linolenic acid (18:3n-3)]. This is associated with a decreased DHA (22:6n-3)-to-arachidonic acid (20:4n-6) ratio in brain lipids. In the first set of experiments, dietary oil was shifted from Saf to a mixture of 2.4% safflower oil plus 0.6% DHA after weaning (Saf-DHA), but all parameters measured in the learning test were essentially unchanged. Brain 22:6n-3 content of the Saf-DHA group reached that of the Per group but the levels of 20:4n-6 and docosatetraenoic acid (22:4n-6) did not decrease to those of the Per group at the start of the test. In the second set of experiments, dietary oil was shifted to a mixture of 0.6% safflower oil plus 1.2% oleic acid (OA) plus 1.2% DHA (Saf-OA-DHA group) with 18:2n-6 content comparable to that of the Per group. The Saf-OA-DHA group exhibited a learning performance similar to that of the Per group; brain 22:6n-3, 20:4n-6, and 22:4n-6 contents were also comparable to those of the Per group. These results indicate that the altered learning behavior associated with a long-term n-3 fatty acid deficiency is reversed by supplementing 22:6n-3 after weaning, when the levels of competing n-6 fatty acids in the diet and brain lipids are limited.  相似文献   

3.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

4.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

5.
The effects of different dietary fat intake on the lipid composition and enzyme behaviour of sarcolemmal (Na+ + K+)ATPase and sarcoplasmic reticulum Ca2+-ATPase from rat heart were investigated. Rat diets were supplemented with either sunflower seed oil (unsatd./satd. 5.6) or sheep kidney fat (unsatd./satd. 0.8). Significant changes in the phospholipid fatty acid composition were observed in both membranes after 9 weeks dietary lipid treatment. For both membranes, the total saturated/unsaturated fatty acid levels were unaffected by the dietary lipid treatment, however the proportions of the major unsaturated fatty acids were altered. Animals fed the sunflower seed oil diet exhibited an increase in n-6 fatty acids, including linoleic (18:2(n-6] and arachidonic (20:4(n-6] while the sheep kidney fat dietary rats were higher in n-3 fatty acids, principally docosahexaenoic (22:6), with the net result being a higher n-6/n-3 ratio in the sunflower seed oil group compared to sheep kidney fat dietary animals. Fluorescence polarization indicated that the fluidity of sarcoplasmic reticular membrane was greater than that of sarcolemmal membrane, with a dietary lipid-induced decrease in fluidity being observed in the sarcoplasmic reticular membrane from sheep kidney fat dietary animals. Despite these significant changes in membrane composition and physical properties, neither the specific activity nor the temperature-activity relationship (Arrhenius profile) of the associated ATPases were altered. These results suggest that with regard to the parameters measured in this study, the two ion-transporting ATPases are not modulated by changes which occur in the membrane lipid composition as a result of the diet.  相似文献   

6.
Abstract— Essential fatty acid deficiency was induced in mice after feeding a fatty acid deficient diet for 6 months. Activity of the (Na++ K+)-ATPase in the total brain homogenates and in isolated synaptosomal plasma membranes was significantly higher ( P & lt; 0 05) in the deficient mice than the controls. Analysis of the acyl group composition of phosphoglycerides in brain as well as in the synaptosomal plasma membranes showed that mice fed the deficient diet had increased levels of 20:3(n-9) and 22:3(n-9) and decreased levels of 20:4(n-6) and 22:4(n-6). However, acyl group changes varied among individual phosphoglycerides and were most obvious in the two species of ethanolamine phosphoglycerides. A decrease in 22:6(n-3) level was also observed in some phosphoglycerides of the synaptosomal plasma membranes especially the diacyl- sn -glycerophosphorylserine. In this experiment, a new solvent system for chromatographic separation of the diacyl- sn -glycerophosphorylserine and diacyl- sn -glycerophosphorylinositol was reported. The separation technique was suitable for analysis of acyl group composition of individual phosphoglycerides by gas-liquid chromatography. The results were consislent with a positive correlation of the non-polar acyl groups of brain membranes with the active ion transport activity. The increase in enzymic activity during deficient state may be the result of a biological adaptation due to structural alteration of the brain membranes.  相似文献   

7.
Abstract— Pregnant rats were maintained on a fat-free diet, starting at 10–12 days after impregnation and the offspring continued on the diet during a developmental period of 120 days. Brain fatty acids showed decreases in the level of (n-3) and (n-6) fatty acids of brain phophoglycerides, except for 22:5 (n-6) which increased. These changes preceded an increase in the (n-9) fatty acids (20:3 and 22:3). Supplementation with either linoleic or linolenic acid for 10 or 30 days after induction of the deficiency state caused an increase in the (n-6) and (n-3) fatty acids respectively, to control levels. The level of 22:5 (n-6) was increased additionally by linoleic supplementation while linolenic refeeding to deficient animals decreased 22:5 (n-6) to near control levels. The anomalous results obtained on 22:5 (n-6) with 18:3 (n-3) supplementation is attributed to competitive inhibition of linoleate desaturation by linolenate. Linoleic and linolenic acid were equally effective in reducing the elevated levels of the (n-9) fatty acids toward control levels, although control levels with either fatty acid was not reached after 30 days supplementation. The increase of the (n-6) and (n-3) fatty acids to normal values precedes the decrease of (n-9) fatty acids following supplementation of linoleic or linolenic acid to fat-deficient rats. No change in fatty acid composition in control animals between 30 and 120 days was observed. In fat deficient as well as supplemented animals the total saturated, monounsaturated and polyunsatur-ated fatty acid composition was constant as was the unsaturation index.  相似文献   

8.
Abstract: Female rats were fed pursed diets containing 10% safflower oil, which is high in linoleic acid, from approximately 2 weeks prior to mating until the 14th day of gestation. They were then fed purified diets containing safflower oil, soybean oil (containing linoleic and linolenic acids), or hydrogenated coconut oil (essential fatty acid deficient). On days 16, 18, and 21 of gestation, foetuses were removed by caesarean section and the brains were subjected to fatty acid analysis. By day 16 of gestation, the ethanolamine glycerophospholipids and combined serine-inositol glycerophospholipids were rich in polyunsaturated fatty acids, particularly arachidonic acid. Between days 16 and 21 of gestation, there was a marked increase in the C22-polyunsaturated acids in these glycerophospholipids, with 225n-6 deposited in foetuses from dams fed safflower or coconut oils and 22:6n-3 deposition occurring in the soybean oil group; the effects of essential fatty acid deficiency in this period were minimal. A similar pattern was evident in the choline glycerophospholipids but this fraction contained less of the polyunsaturated acids. The data are consistent with increased placental transfer of highly unsaturated fatty acids or increased foetal synthesis of these compounds during the last week of gestation, with the actual fatty acid pattern reflecting the dietary fat available to the dam.  相似文献   

9.
Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.  相似文献   

10.
Atlantic herring larvae ( Clupea harengus ) were fed two enriched Artemia diets with different contents of (n-3) highly unsaturated fatty acids (HUFA), one containing low levels of 20: 5(n-3) and no 22: 6(n-3), the other containing substantial levels of both 20: 5(n-3) and 22: 6(n-3). After 30 days of culture, fatty acid compositions of lipid classes in the heads, bodies and eyes of the larvae were analysed. Fish fed Artemia with the low (n-3) HUFA diet lacking 22: 6(n-3) had lower amounts of total (n-3)HUFA and, in particular, of 22:6(n-3) in individual phospholipids and total neutral lipids of heads, bodies and eyes as compared to fish fed Artemia with high levels of (n-3)HUFA. The amount of 22: 6(n-3) in the fatty acids of phosphatidyl-ethanolamine of eyes was particularly susceptible to dietary depletion. The implications of these findings are discussed, particularly in relation to dietary requirements for 22: 6(n-3) during development of neural tissue in predatory fish iarvae.  相似文献   

11.
Abstract: We have studied the effect of a dietary deprivation of n-3 fatty acids on the activity of the dopamine (DA)-de-pendent adenylate cyclase in the rat retina. Experiments were conducted in 6-month-old rats raised on semipurified diets containing either safflower oil (n-3 deficient diet) or soybean oil (control diet). The levels of docosahexaenoic acid [22:6 (n-3)] in retinal phospholipids were significantly decreased in n-3 deficient rats (35–42% of control levels). This was compensated by a rise in 22:5 (n-6), the total content of poly-unsaturated fatty acids (PUFA) remaining approximately constant. Adenylate cyclase activity was measured in retinal membrane preparations from dark-adapted or light-exposed rats. The enzyme activity was stimulated by DA and SKF 38393 in a light-dependent fashion. The activation was lower in rats exposed to light than in dark-adapted animals, suggesting a down-regulation of the DI DA receptors by light. The activation by guanine nucleotides and forskolin was also decreased in light-exposed rats. There was no significant effect of the dietary regimen on the various adenylate cyclase activities and their response to light. Furthermore, the guanine nucleotide- and DA-dependent adenylate cyclase activities of retinal membranes were found to be relatively resistant to changes in membrane fluidity induced in vitro by benzyl alcohol. The results indicate that in the absence of changes in total PUFA content, a decreased ratio of n-3 to n-6 fatty acids in membrane phospholipids does not significantly affect the properties of adenylate cyclase in the rat retina.  相似文献   

12.
The predominant polyunsaturated fatty acids of the n-6 family found in corn oil (CO) are crucial for normal mammary duct formation when fed to animals. However, as shown here, not all polyunsaturated fatty acids are equally effective in stimulating mammary gland development. The n-3 fatty acids in a 10% menhaden oil (MO) diet fed to mice effectively reduced both the diameter and the length of the growing mammary ducts. Previously, we demonstrated a similar reduction in duct growth by feeding a 10% fat diet high in those saturated fats found in hydrogenated cotton seed oil. The inhibited rate of duct maturation caused by hydrogenated cotton seed oil was reversed when the mice were allowed to mature on a diet containing n-6 fatty acids prior to feeding the saturated fat diet. The addition of 1% CO to a 9% hydrogenated cotton seed oil diet fed to immature mice was also sufficient to restore duct growth. Mice fed menhaden oil diets, on the other hand, continued to show impaired ductal growth well into adulthood. Examination of the ovaries from MO-fed mice as compared with CO-fed mice revealed significantly fewer corpora lutea. When exogenous progesterone was given to MO-fed mice, ductal growth was partially restored, but not to the extent seen in mice fed corn oil diets. Investigation of the fatty acid contents of livers of these mice revealed reduced amounts of arachidonate (20:4) in MO-fed mice when compared with CO-fed animals. The addition of 1% CO to the 9% MO diets did not alter the arachidonate content, indicating a block in the conversion of linoleate (18:2) to 20:4 by the n-3 fatty acids. Hence, dietary n-6 fatty acids are essential for normal mammary ductal development when fed prior to maturation. Although saturated rats are ineffective, n-3 fatty acids can partially substitute for the required n-6 fatty acids in both ductal and ovarian development.  相似文献   

13.
This study investigated the effects of a diet deficient in alpha-linolenic acid followed or not by supplementation with phospholipids rich in n-3 polyunsaturated fatty acids (PUFA) on behavior and phospholipid fatty acid composition in selected brain regions. Three weeks before mating, two groups of mice were fed a semisynthetic diet containing both linoleic and alpha-linolenic acid or a diet deficient in alpha-linolenic acid. Pups were fed the same diet as their dams. At the age of 7 weeks, a part of the deficient group was supplemented with n-3 PUFA from either egg yolk or pig brain phospholipids for 2 months. In the open field, rearing activity was significantly reduced in the deficient group. In the elevated plus maze (anxiety protocol), the time spent on open arms was significantly smaller in deficient mice than in controls. Using the learning protocol with the same task, the alpha-linolenic acid deficiency induced a learning deficit. Rearing activity and learning deficits were completely restored by supplementation with egg yolk or cerebral phospholipids, though the level of anxiety remained significantly higher than that of controls. There were no differences among the 4 diet groups for either the Morris water maze or passive avoidance. In control mice, the level of 22:6 n-3 was significantly higher in the frontal cortex compared to all other regions analysed. The frontal cortex and the striatum were the most markedly affected by the deficiency. Supplementation with phospholipids restored normal fatty acid composition in brain regions except for frontal cortex. Egg yolk or cerebral phospholipids are an effective source of n-3 PUFA for reversing behavioral changes and altered fatty acid composition induced by a diet deficient in n-3 PUFA.  相似文献   

14.
Dietary fish oil increases levels of (n-3) fatty acids in the brain and retina of younger animals but has less effect in adults. The duration of the effects of fish oil in young animals, as well as the extent of reversibility of the effects, are unknown. Laying hens were fed either a fish oil diet or a soybean oil-based control diet. Resulting chicks were assigned to three diet groups: chicks from fish oil and soybean oil hens were continued on fish oil and soybean oil diets, respectively, for 0, 3, 6, or 9 weeks, and additional chicks from the fish oil hens were fed the fish oil diet for 0, 3, or 6 weeks and then reversed to the soybean oil diet for a period of 3 weeks. The fatty acid composition of the brain, retina, liver, and serum of the reversal chicks was compared with chicks fed the fish oil diet only or the soybean oil diet only. Brain levels of docosahexaenoic acid (22:6(n-3)) decreased substantially when reversal from the fish oil diet to the control diet was begun at hatching, but did not decrease when reversal was begun at later times. Other (n-3) fatty acids in the brain, docosapentaenoic acid (22:5(n-3)) and eicosapentaenoic acid (20:5(n-3)), decreased substantially at all ages, and to a greater extent than 22:6(n-3). Brain arachidonic acid (20:4(n-6)), which was low in fish oil chicks, rose to control after reversal at hatching, but recovered only partially when reversal was begun at later times. A similar patterns was observed in the retina. Serum and liver (n-3) fatty acids fell to control in all reversal chicks, and (n-6) fatty acids increased to control, except in chicks reversed at 6 weeks. This study demonstrates that by 3 weeks of age the chick brain strongly resists diet-induced lowering of high levels of 22:6(n-3).  相似文献   

15.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

16.
Rhesus monkeys given pre- and postnatal diets deficient in n-3 essential fatty acids develop low levels of docosahexaenoic acid (22:6 n-3, DHA) in the cerebral cortex and retina and impaired visual function. This highly polyunsaturated fatty acid is an important component of retinal photoreceptors and brain synaptic membranes. To study the turnover of polyunsaturated fatty acids in the brain and the reversibility of n-3 fatty acid deficiency, we fed five deficient juvenile rhesus monkeys a fish oil diet rich in DHA and other n-3 fatty acids for up to 129 weeks. The results of serial biopsy samples of the cerebral cortex indicated that the changes of brain fatty acid composition began as early as 1 week after fish oil feeding and stabilized at 12 weeks. The DHA content of the phosphatidylethanolamine of the frontal cortex increased progressively from 3.9 +/- 1.2 to 28.4 +/- 1.7 percent of total fatty acids. The n-6 fatty acid, 22:5, abnormally high in the cerebral cortex of n-3 deficient monkeys, decreased reciprocally from 16.2 +/- 3.1 to 1.6 +/- 0.4%. The half-life (t 1/2) of DHA in brain phosphatidylethanolamine was estimated to be 21 days. The fatty acids of other phospholipids in the brain (phosphatidylcholine, -serine, and -inositol) showed similar changes. The DHA content of plasma and erythrocyte phospholipids also increased greatly, with estimated half-lives of 29 and 21 days, respectively. We conclude that monkey cerebral cortex with an abnormal fatty acid composition produced by dietary n-3 fatty acid deficiency has a remarkable capacity to change its fatty acid content after dietary fish oil, both to increase 22:6 n-3 and to decrease 22:5 n-6 fatty acids. The biochemical evidence of n-3 fatty acid deficiency was completely corrected. These data imply a greater lability of the fatty acids of the phospholipids of the cerebral cortex than has been hitherto appreciated.  相似文献   

17.
This study was designed to investigate the effect of myristic acid on the biosynthesis and metabolism of highly unsaturated fatty acids, when it is supplied in a narrow physiological range in the diet of the rat (0.2-1.2% of total dietary energy). Three experimental diets were designed, containing 22% of total dietary energy as lipids and increasing doses of myristic acid (0.71, 3.00 and 5.57% of total fatty acids). Saturated fat did not exceed 31% of total fat and the C18:3 n-3 amount in each diet was strictly equal (1.6% of total fatty acids). After 7 weeks, the diets had no effect on plasma cholesterol level but greatly modified the liver, plasma and adipose tissue saturated, monounsaturated and polyunsaturated fatty acid profiles. Firstly, daily intakes of myristic acid resulted in a dose-dependent tissue accumulation of myristic acid itself. Palmitic acid was significantly increased in the tissues of the rats fed the higher dose of myristic acid. A dose-response accumulation of tissue C16:1 n-7 as a function of dietary C14:0 was also shown. Secondly, a main finding was that, among n-3 and n-6 polyunsaturated fatty acids, a dose-response accumulation of liver and plasma C20:5 n-3 and C20:3 n-6 (two precursors of eicosanoids) as a function of dietary C14:0 was shown. This result suggests that dietary myristic acid may participate in the regulation of highly unsaturated fatty acid biosynthesis and metabolism.  相似文献   

18.
Rates of conversion of alpha-linolenic acid (alpha-LNA, 18:3n-3) to docosahexaenoic acid (DHA, 22:6n-3) by the mammalian brain and the brain's ability to upregulate these rates during dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) are unknown. To answer these questions, we measured conversion coefficients and rates in post-weaning rats fed an n-3 PUFA deficient (0.2% alpha-LNA of total fatty acids, no DHA) or adequate (4.6% alpha-LNA, no DHA) diet for 15 weeks. Unanesthetized rats in each group were infused intravenously with [1-(14)C]alpha-LNA, and their arterial plasma and microwaved brains collected at 5 minutes were analyzed. The deficient compared with adequate diet reduced brain DHA by 37% and increased brain arachidonic (20:4n-6) and docosapentaenoic (22:5n-6) acids. Only 1% of plasma [1-(14)C]alpha-LNA entering brain was converted to DHA with the adequate diet, and conversion coefficients of alpha-LNA to DHA were unchanged by the deficient diet. In summary, the brain's ability to synthesize DHA from alpha-LNA is very low and is not altered by n-3 PUFA deprivation. Because the liver's reported ability is much higher, and can be upregulated by the deficient diet, DHA converted by the liver from circulating alphaLNA is the source of the brain's DHA when DHA is not in the diet.  相似文献   

19.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

20.
Increasing evidence suggests that fetal and neonatal nutrition impacts later health. Aims of the present study were to determine the effect of maternal dietary fat composition on intestinal phospholipid fatty acids and responsiveness to experimental colitis in suckling rat pups. Female rats were fed isocaloric diets varying only in fat composition throughout gestation and lactation. The oils used were high (8%) in n-3 [canola oil (18:3n-3)], n-6 (72%) [safflower oil (18:2n-6)], or n-9 (78%) [high oleic acid safflower oil (18:1n-9)] fatty acids, n = 6/group. Colitis was induced on postnatal day 15 by intrarectal 2,4-dinitrobenzene sulfonic acid (DNBS) administration with vehicle (50% ethanol) and procedure (0.9% saline) controls. Jejunal and colonic phospholipids and milk fatty acids were determined. The distal colon was assessed for macroscopic damage, histology, and MPO activity. The 18:2n-6 maternal diet increased n-6 fatty acids, whereas the 18:3n-3 diet increased n-3 fatty acids in milk and pup jejunal and colonic phospholipids. Maternal diet, milk, and pup intestinal n-6-to-n-3 fatty acid ratios increased significantly in order: high 18:3n-3 < high 18:1n-9 < high 18:2n-6. DNBS administration in pups in the high 18:2n-6 group led to severe colitis with higher colonic damage scores and MPO activity than in the 18:1n-9 and 18:3n-3 groups. High maternal dietary 18:3n-3 intake was associated with colonic damage scores and MPO activity, which were not significantly different from ethanol controls. We demonstrate that maternal dietary fat influences the composition of intestinal lipids and responsiveness to experimental colitis in nursing offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号