首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
【目的】刺桐姬小蜂Quadrastichus erythrinae Kim体型小,传统的形态学鉴定方法难以快速准确识别。【方法】本研究测定了刺桐姬小蜂的rDNA ITS1和ITS2序列,根据18S rDNA部分序列,利用MEGA的最大相似法(Maximum Likehood)构建系统发育树。根据刺桐姬小蜂ITS1和ITS2序列设计了特异引物,应用特异引物对单只刺桐姬小蜂进行PCR扩增,可稳定地扩增出明显的目的DNA条带。【结果】研究表明,基于ITS基因的DNA条形码技术可以用于刺桐姬小蜂的快速准确鉴定。【结论】因此,采用ITS1和ITS2区的特异性引物可对刺桐姬小蜂进行快速分子鉴定。  相似文献   

2.
【目的】建立一种基于格特隐球菌α交配型位点内SXI1α基因和a交配型位点内SXI2a基因的多重PCR分析,用于快速鉴定格特隐球菌的交配型。【方法】设计针对格特隐球菌α交配型位点内SXI1α基因部分片段和格特隐球菌a交配型位点内SXI2a基因部分片段的特异性引物,用于多重PCR鉴定格特隐球菌的交配型;并与交配试验以及已报道的扩增α交配型位点的引物MFα、STE12α,及扩增a交配型位点的引物STE20a、STE3a进行扩增效果的比较。【结果】基于SXI1α基因和SXI2a基因的多重PCR分析,准确鉴定所有受试格特隐球菌(包括VGI、VGII、VGIII和VGIV基因型)的交配型,引物STE12α、STE20a和STE3a在常规PCR鉴定中不能鉴定部分菌株的交配型;66.7%的受试菌株不能发生交配,交配试验无法鉴定其交配型。【结论】建立的多重PCR方法明显优于常规PCR或交配试验鉴定。  相似文献   

3.
【目的】克隆刺五加内生青霉Penicillium minioluteum P116-1a的鲨烯合酶(Squalene synthase,SS)基因。【方法】采用cDNA 5末端快速扩增(Rapid Amplification ofcDNA 5 Ends,5 RACE)技术扩增P.minioluteum P116-1a SS基因的全长cDNA序列和DNA序列;运用生物信息学方法对该基因进行分析,预测其编码蛋白的结构与功能;并通过RT-PCR法和SDS-PAGE法检测SS的表达情况。【结果】P.minioluteum P116-1a的SS基因含有4个外显子和3个内含子,开放阅读框长1 416 bp,编码471个氨基酸,预测蛋白含67.73%的α螺旋,5.31%的延伸链,2.97%的β折叠,23.99%的无规则卷曲,含有鲨烯合酶和八氢番茄红素合成酶的特异性识别区域,定位于内质网膜。与P.marneffei和Talaromyces stipitatus中SS蛋白的氨基酸同源性达90%以上。不同温度下SS的表达情况不同。【结论】首次在刺五加内生青霉P.minioluteum P116-1a中克隆到SS基因,为进一步研究P.minioluteum P116-1a提高刺五加皂苷含量的机制奠定基础。  相似文献   

4.
【目的】实蝇科昆虫是全球范围内重要的检疫性害虫,其幼虫取食寄主果实,引起果实腐烂、变质,造成巨大经济损失。由于口岸截获多为实蝇卵、幼虫、蛹等非成虫虫态,需饲养至成虫才能根据形态准确鉴定,因此快速可靠的分子鉴定技术体系亟需完善。【方法】利用公开发表的实蝇基因组序列,通过生物信息学方法从4种检疫性实蝇即地中海实蝇Ceratitis capitata、瓜实蝇Bactrocera cucurbitae、橘小实蝇Bactrocera dorsalis、昆士兰实蝇Bactrocera tryoni中挖掘物种特异性的简单重复序列(Simple sequence repeats,SSR),针对各物种设计含有其特异性简单重复序列的引物,提取实蝇样品基因组DNA,采用常规PCR方法优化并筛选各物种特异性引物。【结果】在4种实蝇基因组中共发现20条物种特异性的SSR,基于这些序列设计的3对特异性引物能有效区分地中海实蝇、瓜实蝇和橘小实蝇,扩增片段大小分别为1 251、1 307、823 bp,而在其他物种中检测不到条带。【结论】基因组水平的序列分析发现了物种特异性的SSR,通过筛选获得物种特异性的PCR引物,可应用于3种实蝇的分子鉴定,为口岸检疫人员快速鉴定区分非成虫状态的实蝇提供了实用性技术。  相似文献   

5.
本研究测定了米尔顿姬小蜂Anselmella miltoni Girault的rDNA ITS1和ITS2序列,以探讨其分子鉴定方法。米尔顿姬小蜂的ITS1和ITS2侧翼区(18S和5.8S)序列相对稳定,ITS1和ITS2序列存在种间差异。根据18S rDNA部分序列,利用DNAMAN的Maximum Likelihood方法构建了与膜翅目其它科的系统发育树。根据米尔顿姬小蜂ITS1和ITS2序列设计了特异性引物,应用特异性引物对样品进行了PCR扩增,扩增效果理想,采用上述特异性引物可从单头米尔顿姬小蜂稳定地扩增出明显的目的DNA条带。因此,可以采用ITS1和ITS2区的特异性对米尔顿姬小蜂进行快速的分子鉴定。  相似文献   

6.
刘玉娣  林克剑  韩兰芝  侯茂林 《昆虫学报》2009,52(11):1266-1272
本研究测定了褐飞虱Nilaparvata lugens、白背飞虱Sogatella furcifera和灰飞虱Laodelphax striatellus的rDNA ITS1和ITS2的序列, 以探讨这3种稻飞虱的分子鉴定方法。3种飞虱的ITS1和ITS2侧翼区(18S, 5.8S和28S)序列相对稳定, 但ITS1和ITS2序列在3种飞虱中变异较大。 ITS1在所分析的438个位点中可变位点达294个, ITS2在分析的403个位点中可变位点为177个。根据3种飞虱rDNA的ITS1和ITS2序列设计了特异性引物, 应用特异性引物对样品进行了PCR扩增, 分析发现3种飞虱ITS1区的特异性引物扩增效果不理想, 而ITS2区的特异性引物可以稳定地扩增出明显的目的DNA条带. 因此, 采用ITS2区的特异性引物可以对3种飞虱进行快速的分子鉴定。  相似文献   

7.
【目的】本研究旨在使用基于线粒体基因通用引物的双重PCR技术同时扩增单一样本中两条标记基因,从而达到简化节肢动物物种鉴定流程的目的。【方法】在一次PCR实验中同时加入可扩增线粒体COI基因和16S rDNA两个不同分子标记的引物,对3纲8目14科的14种节肢动物物种标本的基因组DNA进行扩增;扩增产物经电泳和胶回收后测序,并BLAST在线搜索相似序列,验证基于通用引物的双重PCR在不同的动物类群中用于物种鉴定的有效性。【结果】应用基于COI和16S rDNA的引物从分属于3纲8目14科的14种节肢动物基因组DNA中均可成功扩增目的基因;扩增产物测序结果进一步证实了扩增的准确性。【结论】通过本方法进行物种的分子鉴定,不仅可以保证物种鉴定的高准确率,还可以明显减少时间与DNA样本量的消耗,这对需要快速准确鉴定物种或珍稀的材料样本十分重要。  相似文献   

8.
【背景】美洲斑潜蝇是一种严重威胁瓜果蔬菜、烟草、棉花等经济作物和花卉生产的入侵性害虫。由于潜叶蝇类害虫体型较小、生活方式隐蔽、形态相似,本文针对其难以快速准确地进行形态鉴别的问题,以美洲斑潜蝇为研究对象,以菜田常见的4种潜叶蝇类害虫为参照,采用种特异性PCR方法(species-specific PCR,SS-PCR),研究其快速分子检测鉴定技术。【方法】调用GenBank中一段936bp的美洲斑潜蝇线粒体DNA(mtDNA)细胞色素氧化酶亚基Ⅰ基因(COⅠ)的序列(Gen-Bank登录号为EU219613),并根据此基因片段的碱基序列设计引物1对,其扩增片段大小为294bp。【结果】种特异性检验结果显示,该引物只对美洲斑潜蝇的COⅠ基因具有扩增能力,对其他种类如南美斑潜蝇、三叶斑潜蝇、葱斑潜蝇、豌豆潜叶蝇等没有扩增能力。该引物不仅对成虫具有良好的扩增效果,对蛹、幼虫以及单粒卵也具有同样的扩增效果,其最低检出阈值为1/3840头成虫。【结论与意义】SS-PCR技术体系可用于美洲斑潜蝇的鉴定识别与检测监测,对阻止其进一步扩散蔓延具有重要意义。  相似文献   

9.
【目的】针对肺炎支原体新型p1基因型(V2c型)菌株检测工作的需要,建立相应PCR检测方法并进行评价。【方法】针对新型V2c型肺炎支原体菌株p1基因变异区域序列设计特异性扩增引物,建立对V2c型肺炎支原体菌株进行PCR检测的检测方法并用相关基因测序进行验证。使用所建立的巢式多重PCR对北京地区2008-2011年分离到的214株临床肺炎支原体进行分型分析。【结果】特异引物可有效检测出V2c菌株,在其它型别菌株均无阳性扩增。214株肺炎支原体临床分离株中1型菌株占90.2%(193/214),V2a型菌株占0.9%(2/214),V2c型菌株占8.9%(19/214);未检出2型菌株。【结论】针对V2c型肺炎支原体所建立的基于p1基因的PCR检测方法,能有效区分以往方法无法检测出的新型V2c型肺炎支原体菌株,对开展肺炎支原体流行病学调查和病原分析有重要意义。  相似文献   

10.
苹果炭疽菌的分子鉴定与检测   总被引:1,自引:0,他引:1  
测定苹果炭疽菌rDNA全序列,比对苹果炭疽菌和其它炭疽菌ITS序列以及构建系统关系树,发现苹果炭疽菌与胶孢炭疽菌的ITS序列相似性高达99.8%,并与胶孢炭疽菌聚在一起,可以明确苹果炭疽菌应属于胶孢炭疽菌。进一步的序列比对发现,苹果炭疽菌的18S rDNA3’端比其它胶孢炭疽菌多出一段379bp的序列,根据这一特有片段设计引物CgF1与通用引物ITS4配对,结果仅能从苹果炭疽菌中扩增出1232bp的特异性条带。用苹果炭疽菌接种离体苹果,以接种发病的病组织总DNA为模板,利用引物CgF1/ITS4进行PCR扩增,同样可以扩增出1232bp的特异性条带,而健康苹果组织DNA中未能扩增出任何条带,表明该方法可用于苹果炭疽菌的鉴定和快速检测。  相似文献   

11.
12.
13.
We have used map-based approaches to clone a locus containing two genes, Avr1b-1 and Avr1b-2, required for avirulence of the oomycete pathogen Phytophthora sojae (Kaufmann & Gerdemann) on soybean plants carrying resistance gene Rps1b. Avr1b-1 was localized to a single 60-kb bacterial artificial chromosome (BAC) clone by fine-structure genetic mapping. Avr1b-1 was localized within the 60-kb region by identification of an mRNA that is expressed in a race-specific and infection-specific manner and that encodes a small secreted protein. When the Avr1b-1 protein was synthesized in the yeast Pichia pastoris and the secreted protein infiltrated into soybean leaves, it triggered a hypersensitive response specifically in host plants carrying the Rps1b resistance gene. This response eventually spread to the entire inoculated plant. In some isolates of P. sojae virulent on Rps1b-containing cultivars, such as P7081 (race 25) and P7076 (race 19), the Avr1b-1 gene had numerous substitution mutations indicative of strong divergent selection. In other isolates, such as P6497 (race 2) and P9073 (race 25), there were no substitutions in Avr1b-1, but Avr1b-1 mRNA did not accumulate. Genetic complementation experiments with P6497 revealed the presence of a second gene, Avr1b-2, required for the accumulation of Avr1b-1 mRNA. Avr1b-2 was genetically mapped to the same BAC contig as Avr1b-1, using a cross between P7064 (race 7) and P6497. The Avr1k gene, required for avirulence on soybean cultivars containing Rps1k, was mapped to the same interval as Avr1b-1.  相似文献   

14.
The interaction between soybean and the phytopathogenic oomycete Phytophthora sojae is controlled by host resistance (Rps) genes and pathogen avirulence (Avr) genes. We have mapped the Avr1a locus in F(2) populations derived from four different P. sojae races. Four RAPD and nine AFLP markers linked to Avr1a were initially identified. Nine markers were used to compare genetic linkage maps of the Avr1a locus in two distinct F(2) populations. Distorted segregation ratios favoring homozygous genotypes were noted in both crosses. Segregation analysis of all the markers in one F(2) population of 90 progeny generated a map of 113.2 cM encompassing Avr1a, with one marker cosegregating with the gene. The cosegregating DNA marker was used to isolate P. sojae BAC clones and construct a physical map covering 170 kb, from which additional DNA markers were developed. Three markers occurring within the BAC contig were mapped in an enlarged population of 486 F(2) progeny. Avr1a was localized to a 114-kb interval, and an average physical to genetic distance ratio of 391 kb/cM was calculated for this region. This work provides a basis for the positional cloning of Avr1a.  相似文献   

15.
A cross between two different races (race 7xrace 25) of the soybean root and stem rot pathogen Phytophthora sojae was analyzed to characterize the genomic region flanking two cosegregating avirulence genes, Avr4 and Avr6. Both genes cosegregated in the ratio of 82:17 (avirulent:virulent) in an F(2) population, suggestive of a single locus controlling both phenotypes. A chromosome walk was commenced from RAPD marker OPE7.1C, 2.0cM distant from the Avr4/6 locus. Three overlapping cosmids were isolated which included genetic markers that flank the Avr4/6 locus. The chromosome walk spanned a physical distance of 67kb which represented a genetic map distance of 22.3cM, an average recombination frequency of 3.0kb/cM and 11.7-fold greater than the predicted average recombination frequency of 35.3kb/cM for the entire P. sojae genome. Six genes (cDNA clones) expressed from the Avr4/6 genomic region encompassed by the cosmid contig were identified. Single nucleotide polymorphisms and restriction fragment length polymorphisms showed these six genes were closely linked to the Avr4/6 locus. Physical mapping of the cDNA clones within the cosmid contig made it possible to deduce the precise linkage order of the cDNAs. None of the six cDNA clones appear to be candidates for Avr4/6. We conclude that two of these cDNA clones flank a physical region of approximately 24kb and 4.3cM that appears to include the Avr4/6 locus.  相似文献   

16.
17.
18.
19.
20.
The soybean–Phytophthora sojae interaction operates on a gene-for-gene relationship, where the product of a resistance gene (Rps) in the host recognizes that of an avirulence gene (Avr) in the pathogen to generate an incompatible reaction. To exploit this form of resistance, one must match with precision the appropriate Rps gene with the corresponding Avr gene. Currently, this association is evaluated by phenotyping assays that are labour-intensive and often imprecise. To circumvent this limitation, we sought to develop a molecular assay that would reveal the avirulence allele of the seven main Avr genes (Avr1a, Avr1b, Avr1c, Avr1d, Avr1k, Avr3a, and Avr6) in order to diagnose with precision the pathotypes of P. sojae isolates. For this purpose, we analysed the genomic regions of these Avr genes in 31 recently sequenced isolates with different virulence profiles and identified discriminant mutations between avirulence and virulence alleles. Specific primers were designed to generate amplicons of a distinct size, and polymerase chain reaction conditions were optimized in a final assay of two parallel runs. When tested on the 31 isolates of known virulence, the assay accurately revealed all avirulence alleles. The test was further assessed and compared to a phenotyping assay on 25 isolates of unknown virulence. The two assays matched in 97% (170/175) of the interactions studied. Interestingly, the sole cases of discrepancy were obtained with Avr3a, which suggests a possible imperfect interaction with Rps3a. This molecular assay offers a powerful and reliable tool to exploit and study with greater precision soybean resistance against P. sojae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号