首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cyclooxygenase (COX)-1- and COX-2-derived prostaglandins are implicated in the development and progression of several malignancies. We have recently demonstrated that treatment of ovarian carcinoma cells with endothelin-1 (ET-1) induces expression of both COX-1 and COX-2, which contributes to vascular endothelial growth factor (VEGF) production. In this study, we show that in HEY and OVCA 433 ovarian carcinoma cells, ET-1, through the binding with ETA receptor (ETAR), induces prostaglandin E2 (PGE2) production, as the more represented PG types, and increases the expression of PGE2 receptor type 2 (EP2) and type 4 (EP4). The use of pharmacological EP agonists and antagonists indicates that ET-1 and PGE2 stimulate VEGF production principally through EP2 and EP4 receptors. At the mechanistic level, we prove that the induction of PGE2 and VEGF by ET-1 involves Src-mediated epidermal growth factor receptor transactivation. Finally, we demonstrate that ETAR-mediated activation of PGE2-dependent signaling participates in the regulation of the invasive behavior of ovarian carcinoma cells by activating tumor-associated matrix metalloproteinase. These results implicate EP2 and EP4 receptors in the induction of VEGF expression and cell invasiveness by ET-1 and provide a mechanism by which ETAR/ET-1 can promote and interact with PGE2-dependent machinery to amplify its proangiogenic and invasive phenotype in ovarian carcinoma cells. Pharmacological blockade of ETAR can therefore represent an additional strategy to control PGE2 signaling, which has been associated with ovarian carcinoma progression.  相似文献   

3.
Prostaglandin E(2) (PGE(2)), a major metabolite of the cyclooxygenase pathway in the mammary gland, induces angiogenesis during mammary tumor progression. To better define the molecular mechanisms involved, we examined the role of the G protein-coupled receptors (GPCR) for PGE(2) in mammary tumor cell lines isolated from MMTV-cyclooxygenase-2 (COX-2) transgenic mice. Expression of the EP2 subtype of the PGE(2) receptor was correlated with the tumorigenic phenotype and the ability to induce vascular endothelial growth factor (VEGF). Overexpression of EP2 by adenoviral transduction into EP2-null cells resulted in the induction of VEGF expression in response to PGE(2) and CAY10399, an EP2 receptor agonist. The induction of VEGF by the EP2 receptor did not require the hypoxia inducible factor (HIF)-1alpha pathway, MAP kinase pathway, or phosphoinositide-3-kinase/Akt pathway, but required the cAMP/protein kinase A pathway. These results suggest that EP2 receptor is a critical element for PGE(2) mediated VEGF induction in mouse mammary tumor cells.  相似文献   

4.
Prostaglandin (PG) E(2) E-series prostanoid-2 (EP2) receptor is elevated in numerous carcinomas including the endometrium and has been implicated in mediating the effects of PGE(2) on vascular function. In this study, we investigated the intracellular signaling pathways that are activated by the EP2 receptor and their role in regulation of the expression of vascular endothelial growth factor in endometrial adenocarcinoma (Ishikawa) cells. Ishikawa cells were stably transfected with EP2 receptor cDNA in the sense or antisense directions. Treatment of Ishikawa cells with PGE(2) rapidly induced transactivation of the epidermal growth factor receptor (EGFR) and activation of ERK1/2 via the EP2 receptor. Preincubation of cells with chemical inhibitors of protein kinase A, c-Src, and EGFR kinase abolished the EP2-induced activation of EGFR and ERK1/2. PGE(2) signaling via the EP2 receptor also promoted the mRNA expression and secretion of vascular endothelial growth factor protein in Ishikawa cells. This effect was inhibited by preincubation with chemical inhibitors of EGFR kinase, ERK1/2 signaling, and small inhibitory RNA molecules targeted against the EGFR. Therefore, we have demonstrated that elevated EP2 receptor expression may facilitate the PGE(2)-induced release of proangiogenic factors in reproductive tumor cells via intracellular cAMP-mediated transactivation of the EGFR and ERK1/2 pathways.  相似文献   

5.
6.
《Epigenetics》2013,8(4):390-399
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

7.
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

8.
9.
10.
Up‐regulation of cyclooxygenase‐2 (COX‐2) is frequently found in human cancers and is significantly associated with tumor metastasis. Our previous results demonstrate that COX‐2 and its metabolite prostaglandin E2 (PGE2) stimulate the expression of CCR7 chemokine receptor via EP2/EP4 receptors to promote lymphatic invasion in breast cancer cells. In this study, we address the underlying mechanism of COX‐2/PGE2‐induced CCR7 expression. We find that COX‐2/PGE2 increase CCR7 expression via the AKT signaling pathway in breast cancer cells. Promoter deletion and mutation assays identify the Sp1 site located at the −60/−57 region of CCR7 gene promoter is critical for stimulation. Chromatin immunoprecipitation (ChIP) assay confirms that in vivo binding of Sp1 to human CCR7 promoter is increased by COX‐2 and PGE2. Knockdown of Sp1 by shRNA reduces the induction of CCR7 by PGE2. We demonstrate for the first time that AKT may directly phosphorylate Sp1 at S42, T679, and S698. Phosphorylation‐mimic Sp1 protein harboring S42D, T679D, and S698D mutation strongly activates CCR7 expression. In contrast, change of these three residues to alanine completely blocks the induction of CCR7 by PGE2. Pathological investigation demonstrates that CCR7 expression is strongly associated with phospho‐AKT and Sp1 in 120 breast cancer tissues. Collectively, our results demonstrate that COX‐2 up‐regulates CCR7 expression via AKT‐mediated phosphorylation and activation of Sp1 and this pathway is highly activated in metastatic breast cancer. J. Cell. Physiol. 228: 341–348, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
Vascular endothelial growth factor (VEGF), a key angiogenic molecule, is aberrantly expressed in several diseases including asthma where it contributes to bronchial vascular remodeling and chronic inflammation. Asthmatic human airway smooth muscle cells hypersecrete VEGF, but the mechanism is unclear. In this study, we defined the mechanism in human airway smooth muscle cells from nonasthmatic and asthmatic patients. We found that asthmatic cells lacked a repression complex at the VEGF promoter, which was present in nonasthmatic cells. Recruitment of G9A, trimethylation of histone H3 at lysine 9 (H3K9me3), and a resultant decrease in RNA polymerase II at the VEGF promoter was critical to repression of VEGF secretion in nonasthmatic cells. At the asthmatic promoter, H3K9me3 was absent because of failed recruitment of G9a; RNA polymerase II binding, in association with TATA-binding protein-associated factor 1, was increased; H3K4me3 was present; and Sp1 binding was exaggerated and sustained. In contrast, DNA methylation and histone acetylation were similar in asthmatic and nonasthmatic cells. This is the first study, to our knowledge, to show that airway cells in asthma have altered epigenetic regulation of remodeling gene(s). Histone methylation at genes such as VEGF may be an important new therapeutic target.  相似文献   

13.
14.
15.
16.
17.
18.
Recent evidence indicates that cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) are involved in hepatocarcinogenesis. This study was designed to evaluate the possible interaction between the COX-2 and EGFR signaling pathways in human hepatocellular carcinoma (HCC) cells. Immunohistochemical analysis using serial sections of human HCC tissues revealed positive correlation between COX-2 and EGFR in HCC cells (P < 0.01). Overexpression of COX-2 in cultured HCC cells (Hep3B) or treatment with PGE(2) or the selective EP(1) receptor agonist, ONO-DI-004, increased EGFR phosphorylation and tumor cell invasion. The PGE(2)-induced EGFR phosphorylation and cell invasiveness were blocked by the EP(1) receptor siRNA or antagonist ONO-8711 and by two EGFR tyrosine kinase inhibitors, AG1478 and PD153035. The EP(1)-induced EGFR transactivation and cell invasion involves c-Src, in light of the presence of native binding complex of EP(1)/Src/EGFR and the inhibition of PGE(2)-induced EGFR phosphorylation and cell invasion by the Src siRNA and the Src inhibitor, PP2. Further, overexpression of COX-2 or treatment with PGE(2) also induced phosphorylation of c-Met, another receptor tyrosine kinase critical for HCC cell invasion. Moreover, activation of EGFR by EGF increased COX-2 promoter activity and protein expression in Hep3B and Huh-7 cells, whereas blocking PGE(2) synthesis or EP(1) attenuated EGFR phosphorylation induced by EGF, suggesting that the COX-2/PGE(2)/EP(1) pathway also modulate the activation of EGFR by its cognate ligand. These findings disclose a cross-talk between the COX-2/PGE(2)/EP(1) and EGFR/c-Met signaling pathways that coordinately regulate human HCC cell invasion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号