首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes.  相似文献   

2.
The participation of nonmuscle myosins in the transport of organelles and vesicular carriers along actin filaments has been documented. In contrast, there is no evidence for the involvement of myosins in the production of vesicles involved in membrane traffic. Here we show that the putative TGN coat protein p200 (Narula, N., I. McMorrow, G. Plopper, J. Doherty, K.S. Matlin, B. Burke, and J.L. Stow. 1992. J. Cell Biol. 114: 1113–1124) is myosin II. The recruitment of myosin II to Golgi membranes is dependent on actin and is regulated by G proteins. Using an assay that studies the release of transport vesicles from the TGN in vitro, we provide functional evidence that p200/myosin is involved in the assembly of basolateral transport vesicles carrying vesicular stomatitis virus G protein (VSVG) from the TGN of polarized MDCK cells. The 50% reduced efficiency in VSVG vesicle release from the TGN in vitro after depletion of p200/myosin II could be reestablished to control levels by the addition of purified nonmuscle myosin II. Several inhibitors of the actin-stimulated ATPase activity of myosin specifically inhibited the release of VSVG-containing vesicles from the TGN.  相似文献   

3.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

4.
《The Journal of cell biology》1995,128(6):1043-1053
The sorting of apical and basolateral proteins into vesicular carriers takes place in the trans-Golgi network (TGN) in MDCK cells. We have previously analyzed the protein composition of immunoisolated apical and basolateral transport vesicles and have now identified a component that is highly enriched in apical vesicles. Isolation of the encoding cDNA revealed that this protein, annexin XIIIb, is a new isoform of the epithelial specific annexin XIII sub-family which includes the previously described intestine-specific annexin (annexin XIIIa; Wice, B. M., and J. I. Gordon. 1992. J. Cell Biol. 116:405-422). Annexin XIIIb differs from annexin XIIIa in that it contains a unique insert of 41 amino acids in the NH2 terminus and is exclusively expressed in dog intestine and kidney. Immunofluorescence microscopy demonstrated that annexin XIIIb was localized to the apical plasma membrane and underlying punctate structures. Since annexins have been suggested to play a role in membrane-membrane interactions in exocytosis and endocytosis, we investigated whether annexin XIIIb is involved in delivery to the apical cell surface. To this aim we used permeabilized MDCK cells and a cytosol-dependent in vitro transport assay. Antibodies specific for annexin XIIIb significantly inhibited the transport of influenza virus hemagglutinin from the TGN to the apical plasma membrane while the transport of vesicular stomatitis virus glycoprotein to the basolateral cell surface was unaffected. We propose that annexin XIIIb plays a role in vesicular transport to the apical plasma membrane in MDCK cells.  相似文献   

5.
The question of how membrane proteins are delivered from the TGN to the cell surface in fibroblasts has received little attention. In this paper we have studied how their post-Golgi delivery routes compare with those in epithelia] cells. We have analyzed the transport of the vesicular stomatitis virus G protein, the Semliki Forest virus spike glycoprotein, both basolateral in MDCK cells, and the influenza virus hemagglutinin, apical in MDCK cells. In addition, we also have studied the transport of a hemagglutinin mutant (Cys543Tyr) which is basolateral in MDCK cells. Aluminum fluoride, a general activator of heterotrimeric G proteins, inhibited the transport of the basolateral cognate proteins, as well as of the hemagglutinin mutant, from the TGN to the cell surface in BHK and CHO cells, while having no effect on the surface delivery of the wild-type hemagglutinin. Only wild-type hemagglutinin became insoluble in the detergent CHAPS during transport through the BHK and CHO Golgi complexes, whereas the basolateral marker proteins remained CHAPS-soluble. We also have developed an in vitro assay using streptolysin O-permeabilized BHK cells, similar to the one we have previously used for analyzing polarized transport in MDCK cells (Pimplikar, S.W., E. Ikonen, and K. Simons. 1994. J. Cell Biol. 125:1025-1035). In this assay anti-NSF and rab-GDI inhibited transport of Semliki Forest virus spike glycoproteins from the TGN to the cell surface while having little effect on transport of the hemagglutinin. Altogether these data suggest that fibroblasts have apical and basolateral cognate routes from the TGN to the plasma membrane.  相似文献   

6.
Epithelial cell polarity depends on mechanisms for targeting proteins to different plasma membrane domains. Here, we dissect the pathway for apical delivery of several raft-associated, glycosyl phosphatidylinositol (GPI)-anchored proteins in polarized MDCK cells using live-cell imaging and selective inhibition of apical or basolateral exocytosis. Rather than trafficking directly from the trans-Golgi network (TGN) to the apical plasma membrane as previously thought, the GPI-anchored proteins followed an indirect, transcytotic route. They first exited the TGN in membrane-bound carriers that also contained basolateral cargo, although the two cargoes were laterally segregated. The carriers were then targeted to and fused with a zone of lateral plasma membrane adjacent to tight junctions that is known to contain the exocyst. Thereafter, the GPI-anchored proteins, but not basolateral cargo, were rapidly internalized, together with endocytic tracer, into clathrin-free transport intermediates that transcytosed to the apical plasma membrane. Thus, apical sorting of these GPI-anchored proteins occurs at the plasma membrane, rather than at the TGN.  相似文献   

7.
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.  相似文献   

8.
A typical feature of epithelial cells is the polarized distribution of their respective plasma membrane proteins. Apical and basolateral proteins can be sorted both in the trans-Golgi network and endosomes, or in both locations. Inclusion into basolateral carriers in the TGN requires the presence of distinct cytoplasmic determinants, which also appear to be recognized in endosomes. Inactivation of the basolateral sorting information leads to the efficient apical delivery, probably due to the unmasking of a recessive apical signal. Factors associated with the cytosolic face of organelles probably not only recognize these signals to mediate the inclusion of the proteins into the correct transport vesicles, but also target the carriers to the corresponding plasma membrane domain. Our interest has focused on analyzing at the molecular level how epithelial MDCK cells generate and maintain a polarized phenotype, taking advantage of immunoglobulin receptors to study the biosynthetic and endocytic pathways and the corresponding sorting events.  相似文献   

9.
We have investigated the controversial involvement of components of the SNARE (soluble N-ethyl maleimide–sensitive factor [NSF] attachment protein [SNAP] receptor) machinery in membrane traffic to the apical plasma membrane of polarized epithelial (MDCK) cells. Overexpression of syntaxin 3, but not of syntaxins 2 or 4, caused an inhibition of TGN to apical transport and apical recycling, and leads to an accumulation of small vesicles underneath the apical plasma membrane. All other tested transport steps were unaffected by syntaxin 3 overexpression. Botulinum neurotoxin E, which cleaves SNAP-23, and antibodies against α-SNAP inhibit both TGN to apical and basolateral transport in a reconstituted in vitro system. In contrast, we find no evidence for an involvement of N-ethyl maleimide–sensitive factor in TGN to apical transport, whereas basolateral transport is NSF-dependent. We conclude that syntaxin 3, SNAP-23, and α-SNAP are involved in apical membrane fusion. These results demonstrate that vesicle fusion with the apical plasma membrane does not use a mechanism that is entirely unrelated to other cellular membrane fusion events, but uses isoforms of components of the SNARE machinery, which suggests that they play a role in providing specificity to polarized membrane traffic.  相似文献   

10.
p200 is a cytoplasmic protein that associates with vesicles budding from the trans-golgi network (TGN). The protein was identified by a monoclonal antibody AD7. We have used this antibody to analyze whether p200 functions in exocytic transport from the TGN to the apical or basolateral plasma membrane in Madin-Darby canine kidney cells. We found that transport of the viral marker proteins, influenza hemagglutinin (HA) to the apical surface or vesicular stomatitis virus glycoprotein (VSV G) to the basolateral surface in streptolysin O-permeabilized cells was not affected when p200 was depleted from both the membranes and the cytosol. When vesicles isolated from perforated cells were analyzed by equilibrium density gradient centrifugation, the p200 immunoreactive membranes did not comigrate with either the apical vesicle marker HA or the basolateral vesicle marker VSV G. Immunoelectron microscopy of perforated and double-labeled cells showed that the p200 positive vesicular profiles were not labeled by antibodies to HA or VSV G when the viral proteins were accumulated in the TGN. Furthermore, the p200-decorated vesicles were more electron dense than those labeled with the viral antibodies. Together, these results suggest that p200 does not function in the transport pathways that carry HA from the TGN to the apical surface or VSV G from the TGN to the basolateral surface.  相似文献   

11.
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cells septin 2 (SEPT2) fibers colocalize with a subset of microtubule tracks composed of polyglutamylated (polyGlu) tubulin, and that vesicles containing apical or basolateral proteins exit the TGN along these SEPT2/polyGlu microtubule tracks. Tubulin-associated SEPT2 facilitates vesicle transport by maintaining polyGlu microtubule tracks and impeding tubulin binding of microtubule-associated protein 4 (MAP4). Significantly, this regulatory step is required for polarized, columnar-shaped epithelia biogenesis; upon SEPT2 depletion, cells become short and fibroblast-shaped due to intracellular accumulation of apical and basolateral membrane proteins, and loss of vertically oriented polyGlu microtubules. We suggest that septin coupling of the microtubule cytoskeleton to post-Golgi vesicle transport is required for the morphogenesis of polarized epithelia.  相似文献   

12.
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.  相似文献   

13.
To maintain polarity, epithelial cells continuously sort transmembrane proteins to the apical or basolateral membrane domains during biosynthetic delivery or after internalization. During biosynthetic delivery, some cargo proteins move from the trans-Golgi network (TGN) into recycling endosomes (RE) before being delivered to the plasma membrane. However, proteins that regulate this transport step remained elusive. In this study, we show that Rab13 partially colocalizes with TGN38 at the TGN and transferrin receptors in RE. Knockdown of Rab13 with short hairpin RNA in human bronchial epithelial cells or overexpression of dominant-active or dominant-negative alleles of Rab13 in Madin-Darby canine kidney cells disrupts TGN38/46 localization at the TGN. Moreover, overexpression of Rab13 mutant alleles inhibits surface arrival of proteins that move through RE during biosynthetic delivery (vesicular stomatitis virus glycoprotein [VSVG], A-VSVG, and LDLR-CT27). Importantly, proteins using a direct route from the TGN to the plasma membrane are not affected. Thus, Rab13 appears to regulate membrane trafficking between TGN and RE.  相似文献   

14.
We have evaluated transient transfection of MDCK cells by the DEAE-dextran/chloroquine method as a rapid method for study of heterologous plasma membrane protein polarity. Transiently transfected cells reseeded onto permeable supports formed confluent monolayers with normal tight junctions and normal distribution of endogenous apical and basolateral surface markers. Transfected monolayers reseeded onto opaque polycarbonate filters attained cell heights 3 times greater than on transparent filters. Conventional and confocal immunofluorescence microscopy were used to assess polarity of transient expression of heterologous proteins previously defined in stably transfected cell lines as apical (DAF-CD55), basolateral (VSV-G), and nonpolarized (CD7) in distribution. Through each transiently expressed protein exhibited a polarity phenotype in most cells which resembled the stable phenotype, consistency of polarized localization was less than in stably transfected cells. Similar results were obtained by lipofection. We conclude that transient transfection of MDCK cells may be useful as a rapid screen, but is not sufficiently reliable for definitive assessment of heterologous membrane proein polarity.Abbreviations CD55-DAF CD55-Decay-accelearating factor - DMSO Dimethylsulfoxide - FBS Fetal bovine serum - FITC Fluorescein isothiocyanate - MDCK Madin Darby canine kidney cells - PBS Phosphate-buffered saline - TER Transepithelial resistance - VSVG Vesicular stomatis virus G protein  相似文献   

15.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

16.
Caveolin-1 and -2 in the Exocytic Pathway of MDCK Cells   总被引:16,自引:1,他引:15       下载免费PDF全文
Abstract. We have studied the biosynthesis and transport of the endogenous caveolins in MDCK cells. We show that in addition to homooligomers of caveolin-1, heterooligomeric complexes of caveolin-1 and -2 are formed in the ER. The oligomers become larger, increasingly detergent insoluble, and phosphorylated on caveolin-2 during transport to the cell surface. In the TGN caveolin-1/-2 heterooligomers are sorted into basolateral vesicles, whereas larger caveolin-1 homooligomers are targeted to the apical side. Caveolin-1 is present on both the apical and basolateral plasma membrane, whereas caveolin-2 is enriched on the basolateral surface where caveolae are present. This suggests that caveolin-1 and -2 heterooligomers are involved in caveolar biogenesis in the basolateral plasma membrane. Anti–caveolin-1 antibodies inhibit the apical delivery of influenza virus hemagglutinin without affecting basolateral transport of vesicular stomatitis virus G protein. Thus, we suggest that caveolin-1 homooligomers play a role in apical transport.  相似文献   

17.
Although epithelial cells are known to exhibit a polarized distribution of membrane components, the pathways responsible for delivering membrane proteins to their appropriate domains remain unclear. Using an optimized approach to three-dimensional live cell imaging, we have visualized the transport of newly synthesized apical and basolateral membrane proteins in fully polarized filter-grown Madin-Darby canine kidney cells. We performed a detailed quantitative kinetic analysis of trans-Golgi network (TGN) exit, passage through transport intermediates, and arrival at the plasma membrane using cyan/yellow fluorescent protein-tagged glycosylphosphatidylinositol-anchored protein and vesicular stomatitis virus glycoprotein as apical and basolateral reporters, respectively. For both pathways, exit from the TGN was rate limiting. Furthermore, apical and basolateral proteins were targeted directly to their respective membranes, resolving current confusion as to whether sorting occurs on the secretory pathway or only after endocytosis. However, a transcytotic protein did reach the apical surface after a prior appearance basolaterally. Finally, newly synthesized proteins appeared to be delivered to the entire lateral or apical surface, suggesting-contrary to expectations-that there is not a restricted site for vesicle docking or fusion adjacent to the junctional complex.  相似文献   

18.
《The Journal of cell biology》1990,111(6):2893-2908
A procedure employing streptolysin O to effect the selective permeabilization of either the apical or basolateral plasma membrane domains of MDCK cell monolayers grown on a filter support was developed which permeabilizes the entire monolayer, leaves the opposite cell surface domain intact, and does not abolish the integrity of the tight junctions. This procedure renders the cell interior accessible to exogenous macromolecules and impermeant reagents, permitting the examination of their effects on membrane protein transport to the intact surface. The last stages of the transport of the influenza virus hemagglutinin (HA) to the apical surface were studied in pulse-labeled, virus-infected MDCK cells that were incubated at 19.5 degrees C for 90 min to accumulate newly synthesized HA in the trans-Golgi network (TGN), before raising the temperature to 35 degrees C to allow synchronized transport to the plasma membrane. In cells permeabilized immediately after the cold block, 50% of the intracellular HA molecules were subsequently delivered to the apical surface. This transport was dependent on the presence of an exogenous ATP supply and was markedly inhibited by the addition of GTP-gamma-S at the time of permeabilization. On the other hand, the GTP analogue had no effect when it was added to cells that, after the cold block, were incubated for 15 min at 35 degrees C before permeabilization, even though at this time most HA molecules were still intracellular and their appearance at the cell surface was largely dependent on exogenous ATP. These findings indicate that GTP-binding proteins are involved in the constitutive process that effects vesicular transport from the TGN to the plasma membrane and that they are charged early in this process. Transport of HA to the cell surface could be made dependent on the addition of exogenous cytosol when, after permeabilization, cells were washed to remove endogenous cytosolic components. This opens the way towards the identification of cell components that mediate the sorting of apical and basolateral membrane components in the TGN and their polarized delivery to the cell surface.  相似文献   

19.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

20.
In polarized epithelial cells, sorting of proteins and lipids to the apical or basolateral domain of the plasma membrane can occur via direct or indirect (transcytotic) pathways from the trans Golgi network (TGN). The 'rafts' hypothesis postulates that the key event for direct apical sorting of some transmembrane proteins and the majority of GPI-anchored proteins depends on their association with glycosphingolipid and cholesterol enriched microdomains (rafts). However, the mechanism of indirect sorting to the apical membrane is not clear. The polyimmunoglobulin receptor (pIgR) is one of the best studied proteins that follow the transcytotic pathway. It is normally delivered from the TGN to the basolateral surface of polarized Madin–Darby Canine Kidney (MDCK) cells from where it transports dIgA or dIgM to the apical surface. We have studied the intracellular trafficking of pIgR in Fischer rat thyroid cells (FRT), and have investigated the sorting machinery involved in transcytosis of this receptor in both FRT and MDCK cells. We found that, in contrast with MDCK cells, a significant amount (∼30%) of pIgR reaches the apical surface by a direct pathway. Furthermore, in both cell lines it does not associate with Triton X-100-insoluble microdomains, suggesting that at least in these cells 'rafts' are not involved in basolateral to apical transcytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号