首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
1. Aposematic coloration in prey promotes its survival by conspicuously advertising unpalatability to predators. Although classical examples of aposematic signals involve constant presentation of a signal at a distance, some animals suddenly display warning colours only when they are attacked. 2. Characteristics of body parts suddenly displayed, such as conspicuous coloration or eyespot pattern, may increase the survival of the prey by startling the predator, and/or by signalling unpalatability to the predators at the moment of attack. 3. The adaptive value of such colour patterns suddenly displayed by unpalatable prey has not been studied. We experimentally blackened the red patch in the conspicuous red–white–black hindwing pattern displayed by an unpalatable insect Lycorma delicatula White (Hemiptera: Fulgoridae) in response to predator's attack. 4. There was no evidence that the presence of the red patch increased prey survival over several weeks. We hypothesise that predators generalised from the red–white–black patches on the hindwings of unpalatable L. delicatula to any similar wing display as a signal of unpalatability. Because a higher proportion of males than females stay put at their resting sites, displaying their wings in response to repeated attacks by predators, wing damage was more frequent in males than in females. 5. To our knowledge, this is the first experimental test of an adaptive role of aposematic signals presented by unpalatable prey during sudden displays triggered by direct predatory attack.  相似文献   

2.
Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator’s ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators’ direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.  相似文献   

3.
Individual variation in behavioral strategies is ubiquitous in nature. Yet, explaining how this variation is being maintained remains a challenging task. We use a spatially-explicit individual-based simulation model to evaluate the extent to which the efficiency of an alternative spacing tactic of prey and an alternative search tactic of predators are influenced by the spatial pattern of prey, social interactions among predators (i.e., interference and information sharing) and predator density. In response to predation risk, prey individuals can either spread out or aggregate. We demonstrate that if prey is extremely clumped, spreading out may help when predators share information regarding prey locations and when predators shift to area-restricted search following an encounter with prey. However, dispersion is counter-selected when predators interact by interference, especially under high predator density. When predators search for more randomly distributed prey, interference and information sharing similarly affect the relative advantage of spreading out. Under a clumped prey spatial pattern, predators benefit from shifting their search tactic to an area-restricted search following an encounter with prey. This advantage is moderated as predator density increases and when predators interact either by interference or information sharing. Under a more random prey pattern, information sharing may deteriorate the inferior search tactic even more, compared to interference or no interaction among predators. Our simulation clarifies how interactions among searching predators may affect aggregation behavior of prey, the relative success of alternative search tactics and their potential to invade established populations using some other search or spacing tactics.  相似文献   

4.
Tail flicking is a common behavior in many bird species, but its function is often unknown. Apart from intraspecific communication, tail flicking could be used during predator–prey communication, e.g., as a signal of prey vigilance or quality. We studied this behavior in the black redstart (Phoenicurus ochruros), a species that frequently shows tail flicking and is prone to attacks by ambushing predators that hide in cover. Hence, cover might be perceived as dangerous by this species. We hypothesized that flicking should increase with decreasing distance to cover. We counted the number of tail flicks of individuals and measured their distance to the nearest cover for an ambushing predator. We found that distance to cover had a significant effect on tail flicking behavior, as flicking increased with decreasing distance, but found no difference in flicking frequency between adults and juveniles or between sexes. Consequently, tail flicking is unlikely to signal submission or to be sexually selected in the black redstart. Since tail flicking also occurred in the absence of predators, we consider tail flicking in black redstarts to display vigilance and to be directed towards ambushing predators.  相似文献   

5.
The impacts that predators have on prey behavior, growth, survival, and ultimately the composition of many ecological communities are mediated by prey defenses and the susceptibility of prey to predators. We hypothesized that prey populations inhabiting short-lived, species-poor, aquatic environments should lack significant morphological, developmental, and behavioral responses to predators and are therefore highly susceptible to predation. Furthermore, we predicted that the resultant decrease in prey density and increase in per capita resources due to high susceptibility to predators should enhance overall cohort survival because of enhanced growth of surviving prey. To test these ideas, we performed laboratory and outdoor mesocosm experiments to disentangle multiple effects of predators on an anuran (Scaphiopus couchii); a species highly adapted to breeding in ephemeral habitats and that has one of the shortest larval periods of all anurans. Chemical (presence of predator) and lethal predator cues (predator plus consumed conspecific) elicited no response in behavior, development, or morphology, indicating a lack of defensive mechanisms. Survivorship was significantly reduced in treatments where tadpoles were exposed to predators. However, this reduction in prey density led to accelerated time to metamorphosis, conferring an advantage to survivors who must metamorphose before ephemeral ponds dry. Our experiments demonstrated that in short-lived environments, prey may exhibit little or no response to the presence of predators presumably because selection for anti-predator defenses is countered by selection for rapid metamorphosis. However, predation actually resulted in an increase in overall cohort survival. Although predators are relatively rare in highly ephemeral aquatic environments, they may play an important role in facilitating the long-term persistence of their prey by reducing prey density.  相似文献   

6.
Predators influence the evolution of colour pattern in prey species, yet how these selective forces might differ among predators is rarely considered. In particular, prey colour patterns that indicate unpalatability to some predator species may not carry the same signal for other predators. We test several hypotheses of selection on patterning between mammal predators and the polymorphic salamander Plethodon cinereus, which, under an avian visual system appears as a mimic of the toxic newt Notophthalmus viridescens. We fit each hypothesis against field observations of mammalian attacks on salamander clay replicas. We then develop a novel analytical procedure that enables the combination of multiple non‐exclusive models in a likelihood framework. We find that mammals do not follow any single hypothesis proposed, including the hypothesis of mimicry. Instead, mammals in this system use visual cues while foraging to avoid unfamiliar, novel prey and attack conspicuous prey. We propose that mammals may help to maintain colour pattern polymorphism within populations of P. cinereus by avoiding novel, unfamiliar colour morphs. Additionally, selective pressures from multiple predators and variation in predator communities among sites may contribute to the maintenance of colour polymorphism within and among localities in this salamander species.  相似文献   

7.
Rudh A  Rogell B  Höglund J 《Molecular ecology》2007,16(20):4284-4294
The relative roles that geographical isolation and selection play in driving population divergence remain one of the central questions in evolutionary biology. We approached this question by investigating genetic and morphological variation among populations of the strawberry poison frog, Dendrobates pumilio, in the Bocas del Toro archipelago, Panama. We found significant population genetic structure and isolation by distance based on amplified fragment length polymorphism markers. Snout vent length (SVL), coloration and the extent and size of dorsal black spots showed large variation among the studied populations. Differences in SVL correlated with genetic distance, whereas black spot patterns and other coloration parameters did not. Indeed, the latter characters were observed to be dramatically different between contiguous populations located on the same island. These results imply that neutral divergence among populations may account for the genetic patterns based on amplified fragment length polymorphism markers and SVL. However, selective pressures need to be invoked in order to explain the extraordinary variation in spot size and coverage, and coloration. We discuss the possibility that the observed variation in colour morphs is a consequence of a combination of local variation in both natural selection on an aposematic signal towards visual predators and sexual selection generated by colour morph-specific mate preferences.  相似文献   

8.
Summary We compare the dynamics of predator-prey systems with specialist predators or adaptive generalist predators that base diet choice on energy-maximizing criteria. Adaptive predator behaviour leads to functional responses that are influenced by the relative abundance of alternate prey. This results in the per capita predation risk being positively density-dependent near points of diet expansion. For a small set of parameter values, systems with adaptive predators can be locally stable whereas systems with specialist predators would be unstable. This occurs mainly when alternate prey have low enough profitability that predators cannot sustain themselves indefinitely when feeding on alternate prey. Local stability of systems with adaptive predator behaviour is inversely related to the goodness of fit to optimal diet choice criteria. Hence, typical patterns of partial prey preference are more stabilizing than perfect optimal diet selection. Locally stable systems with adaptive predators are often globally unstable, converging on limit cycles for many initial population densities. The small range of parameter combinations and initial population densities leading to stable equilibria suggest that adaptive diet selection is unlikely to be a ubiquitous stabilizing factor in trophic interactions.  相似文献   

9.
Predation risk influences prey use of space. However, little is known about how predation risk influences breeding habitat selection and the fitness consequences of these decisions. The nest sites of central-place foraging predators may spatially anchor predation risk in the landscape. We explored how the spatial dispersion of avian predator nests influenced prey territory location and fitness related measures. We placed 249 nest boxes for migrant pied flycatchers Ficedula hypoleuca , at distances between 10 and 630 m, around seven different sparrowhawk nests Accipiter nisus . After closely monitoring flycatcher nests we found that flycatcher arrival dates, nest box occupation rates and clutch size showed a unimodal relationship with distance from sparrowhawk nests. This relationship suggested an optimal territory location at intermediate distances between 330 and 430 m from sparrowhawk nests. Furthermore, pied flycatcher nestling quantity and quality increased linearly with distance from sparrowhawk nests. These fitness related measures were between 4 and 26% larger in flycatcher nestlings raised far from, relative to those raised nearby, sparrowhawk nests. Our results suggest that breeding sparrowhawk affected both flycatcher habitat selection and reproductive success. We propose that nesting predators create predictable spatial variation in predation risk for both adult prey and possibly their nests, to which prey individuals are able to adaptively respond. Recognising predictable spatial variation in perceived predation risk may be fundamental for a proper understanding of predator-prey interactions and indeed prey species interactions.  相似文献   

10.
Mimicry occurs when one species gains protection from predators by resembling an unprofitable model species. The degree of mimic–model similarity is variable in nature and is closely related to the number of traits that the mimic shares with its model. Here, we experimentally test the hypothesis that the relative salience of traits, as perceived by a predator, is an important determinant of the degree of mimic–model similarity required for successful mimicry. We manipulated the relative salience of the traits of a two-trait artificial model prey, and subsequently tested the survival of mimics of the different traits. The unrewarded model prey had two colour traits, black and blue, and the rewarded prey had two combinations of green, brown and grey shades. Blue tits were used as predators. We found that the birds perceived the black and blue traits to be similarly salient in one treatment, and mimic–model similarity in both traits was then required for high mimic success. In a second treatment, the blue trait was the most salient trait, and mimic–model similarity in this trait alone achieved high success. Our results thus support the idea that similar salience of model traits can explain the occurrence of multi-trait mimicry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号