首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
Ethylene formation by loaves of the central stem zone of the short-day tobacco cv. Maryland Mammoth and long-davNicntiana sylvestris was followed for 40 days during in duction and transition to flowering. In SD tobacco Mammoth, ethylene formation rose between days 0-10, remained unchanged for the next 10 davs, rose slightly between days 20 - 30 and sharply within the last 10 days. The time-course of ethylene formation by the leaves of LD tobacco N.silvestris resembled that of Mammoth, but tho changes were less pronounced, especially at the beginning of the period. Generally, ethylene formation is much higher in SD tobacco Mammoth than in LDN. silvestris. Ethephon (0.02 %) application during flower induction significantly reduced flowering in SD tobacco Mammoth (by 47.5 %) and also reduced apical meristem length. In N.silvestris ethephon application did not reduce flowering, but most of the treated plants (62.5 %) did not attain the stage of inflorescence. Apical meristem (or inflorescence) and stem length were also reduced. The possible role of ethylene in regulation of transition to flowering is discussed.  相似文献   

2.
Ethylene and the Regulation of Apple Stem Growth under Stress   总被引:5,自引:0,他引:5  
Bending stree resulted in an increase in the ethylene concentration in the internal atmosphere of apple stem (Malus domestica Borkh. cv. Winesap). reaching a maximum at about 2 days after bending. The rise in ethylene content was followed by a depression of growth at about 14–21 days. Ethylene content returned to control levels after about 3 weeks. Application of a past naphthaleneacetic acit caused a similar increase in ethylene levels, and the application of ethephon pastes brought about an inhibition of elongation growth. Whereas stress treatment resulted in an inhibition of growth in stem diameter as well as elongation of growth in stem diameter as well as elongation, the ethephon applications resulted in a stimulation of growth in diameter. It is suggested that ethylene may be involved in the growth responses to mechanical stress.  相似文献   

3.
Role of Ethylene in Induction of Flooding Damage in Sunflower   总被引:8,自引:0,他引:8  
The possibility that symptoms of flooding damage in plants are primarily caused by an accumulation of ethylene was investigated using pot-grown sunflower (Helianthus annuus) plants. When plants were flooded to the basal pairs of leaves, ethylene in roots and stems below the water line began to increase. This coincided with the start of hypocotyl hypertrophy and new root formation in hypocotyls, which continued for 14-16 days. There were highly significant correlations between ethylene concentration and number of roots and hypocotyl diameter. After approximately 4 days of flooding, ethylene concentrations in stems between nodes for the 1st and 3rd basal pairs of leaves started to increase, coinciding with initiation of chlorophyll breakdown and epinasty of the 2nd basal pairs of leaves. Thus, there were correlations between ethylene concentration and chlorophyll breakdown and epinasty. The lower the leaves, the more chlorophyll breakdown among 1st, 2nd, 3rd, and 4th basal pairs of leaves. The longer the flooding, the more severe the flooding damage; and even when returned to normal condition, plants flooded longer than 3 days were not able to recover from flooding damage. A gas chromatographic study revealed that Ethephon was absorbed by roots and decomposed to ethylene in the plant. Damage symptoms caused by soil application of Ethephon, such as reduced stem height, chlorophyll breakdown, epinasty of the 2nd basal pairs of leaves, and hypocotyl hypertrophy, were almost identical with those caused by soil flooding treatment. Microscopic studies revealed that radially enlarged cells and increased intercellular spaces in the cortex were the major contribution to the increased hypocotyl diameter in both flooded and Ethephon-treated plants. It is concluded that the increase in ethylene concentration in flooded plants is largely, although not exclusively, responsible for flooding damage symptoms.  相似文献   

4.
The content of endogenous cytokinin-like substances and the release of ethylene were determined in leaves of different insertion of sunflower plants during their ontogeny. The content of cytokinin-like substances was highest in the leaves on the middle part of the stem (that is in leaves just before full expansion), with a decrease occurring both towards the base and the apex of the stem, when followed at four growth phases (vegetative plants, plants with inflorescence diameter up to 0.5 cm, plants with inflorescence diameter up to 3 cm, and plants in flower). Changes in the content of cytokinin-like substances during the ontogeny of the leaf also corresponded to this pattern. Data obtained with the leaf at the third node from the basis of the stem showed that the level of cytokinin-like substances first sharply increased, and then after reaching maximal value (at the time when leaf blade area reached approximately 70 % of the final value) slowly and continuously decreased. The highest amount of ethylene released from the leaves was recorded in basal leaves and then also in apical leaves, whereas the leaves with the largest blade area situated at the central part of the stem released the lowest amount of ethylene. This pattern was repeatedly found at all four selected growth phases of sunflower plants.  相似文献   

5.
Rosettes of flooding-resistant Rumex palustris plants show a submergence-induced stimulation of elongation, which is confined to the petioles of young leaves. This response increases the probability of survival. It is induced by ethylene that accumulates in submerged tissues. Flooding-intolerant Rumex acetosella plants do not show this response. We investigated whether differences in shoot elongation between the species, between old and young leaves and between the petiole and leaf blade of a R. palustris plant result from differences in internal ethylene concentration or in sensitivity to the gas. Concentrations of free and conjugated ACC in petioles and leaf blades of R. palustris indicated that ethylene is synthesized throughout the submerged shoot, although production rates varied locally. Nevertheless, no differences in ethylene concentration were found between submerged leaves of various ages. In contrast, dose-response curves showed that only elongation of young petioles of R. palustris was sensitive to ethylene. In R. acetosella, elongation of all leaves was insensitive to ethylene. We conclude that variation in ethylene sensitivity rather than content explains the differences in submergence-induced shoot elongation between the two Rumex species and between leaves of R. palustris.  相似文献   

6.
The cotton defoliant, thidiazuron, 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea stimulated ethylene formation in primary leaves of Phaseolus vulgaris var. Favorit, three to eight days after spraying. Aminoethoxyvinylglycine (AVG), an inhibitor of ethylene formation, delayed this ethylene outburst by two to three days when sprayed together with the defoliant. Under conditions of dryness, thidiazuron inhibited the stomatal closure of bean leaves. Spraying with AVG counteracted this effect of thidiazuron on the stomates and caused a partial and reversible closure ca 1 day after spraying.  相似文献   

7.
桑(Morus alba)具有较强的耐水淹特性, 为了探究水淹胁迫对其非结构性碳水化合物和生长激素的影响, 揭示变化规律, 该研究采取室内模拟水淹实验, 以三年生盆栽桑苗作为研究对象, 设置对照组(CK)、根淹组(GY)、浅淹组(QY)、深淹组(SY)等4个不同水淹胁迫的处理, 定期观测并记录桑苗叶片非结构性碳水化合物(可溶性糖和淀粉)含量、内源生长激素(乙烯、脱落酸、赤霉素)含量变化情况。研究结果表明: (1)水淹胁迫会促进桑苗叶片内的生化反应, 造成叶片可溶性糖含量增加。水淹75天, GY、QY、SY桑苗叶片可溶性糖含量较水淹前分别增加182.18%、170.21%和94.16%, 差异显著, 且显著高于CK。水淹胁迫下桑苗叶片淀粉含量在水淹0-50天无显著变化, 水淹75天, GY、QY、SY桑苗叶片淀粉含量较水淹50天分别增加290.84%、244.65%和130.04%, 差异显著, 且显著高于CK。(2)水淹胁迫下桑苗叶片乙烯和赤霉素含量均显著增加, 水淹75天, GY和SY桑苗乙烯含量较水淹前分别增加62.80%和26.78%, 差异显著; GY、QY和SY桑苗赤霉素含量分别增加27.48%、18.02%和25.04%, 差异显著。随着水淹时间增加, GY和SY桑苗乙烯和赤霉素含量总体均呈增加趋势, QY桑苗乙烯和赤霉素含量先增后减, 但仍高于水淹前。水淹胁迫下水淹各组桑苗叶片脱落酸含量随着水淹深度的增加而增加, 水淹75天, QY和SY桑苗叶片脱落酸含量较水淹前分别增加19.20%和36.16%, 差异显著; GY桑苗脱落酸含量无显著变化。上述研究结果表明桑苗可通过调整体内非结构性碳水化合物(可溶性糖和淀粉)的含量和分配, 同时通过积累乙烯、赤霉素、脱落酸等内源激素以适应水淹环境, 具有较强耐淹能力。  相似文献   

8.
Accumulation and ethylene-dependent translocation of free polyamines was studied in various organs, the phloem and xylem exudates of common ice plants (Mesembryanthemum crystallinum L.). Under normal conditions (23–25°C), spermidine predominated among polyamines. Cadaverine was found in old leaves, stems, and, in large quantities, in roots. The heat shock treatment (HS; 47°C, 2 h) of intact plant shoots induced intense evolution of ethylene from leaves but reduced the leaf content of polyamines. Under these conditions, the concentration of polyamines in roots, particularly of cadaverine, increased many times. The HS treatment of roots (40°C, 2 h) induced translocation of cadaverine to stems and putrescine to leaves. An enhanced polyamine content after HS treatment was also found in the xylem and phloem exudates. The exposure of detached leaves to ethylene led to a reduction in their putrescine and spermidine and accumulation of cadaverine, which implies the ethylene-dependent formation of cadaverine and a possible relation between the HS-induced translocation of this diamine to roots and the transient ethylene evolution by leaves. To validate this hypothesis, we compared the ethylene evolution rate and interorgan partitioning of cadaverine and other polyamines for two lines of Arabidopsis thaliana: the wild type (Col-0) and ein4 mutant with impaired ethylene reception. In plants grown in light at 20–21°C, the rate of ethylene evolution by rosetted leaves was higher in the mutant than in the wild type. The content of putrescine and spermidine was reduced in mutant leaves, whereas cadaverine concentration increased almost threefold compared with the wild type. In roots, cadaverine was found only in the wild type and not in the mutant line. Our data indicate the ethylene-dependent formation of cadaverine in leaves and possible involvement of cadaverine and ethylene in the long-distance translocation of stress (HS) signal in plants.  相似文献   

9.
This study was conducted with a view to understand the effect of plant characteristics on the incidence of pests on most popular jute varieties, viz. JRO-524, JRO-632, JRO-878, JRO-7835 of olitorius jute and JRC-212, JRC-321, JRC-4444, JRC-7447 of capsularis jute. Correlation studies of plant characteristics with pest incidence in jute (Corchorus spp.) revealed that the basal girth of plant exhibited a positive significant relationship with the incidence of Apion corchori Marshall but not with other pests such as jute semilooper (Anomis sabulifera Guen.), Bihar hairy caterpillar (Spilarctia obliqua Wlk.), grey weevil (Myllocerus discolor Bohemus) and yellow mite (Polyphagotarsonemus latus Banks). However, plant height showed positive correlation with the incidence of all the major pests of jute. Leaf characteristics (number of leaves/plant, leaf area, leaf thickness, moisture and chlorophyll content of leaves of all the varieties recorded at three different growth stages, i.e. at 50, 80 and 110 days after sowing), number of leaves/plant had positive and significant relationship with the incidence of all the pests except stem weevil. However, leaf area and moisture content of leaves showed significant positive relationship with the incidence of yellow mite. Leaf moisture also showed a positive role on the infestation of grey weevil. Leaf thickness and chlorophyll content of leaves and stem, fibre thickness and moisture content of stem did show any significant effect on pest's incidence. Upon comparing the plant characteristics between the two jute species, olitorius varieties had greater fibre thickness than that of capsularis varieties but fibre thickness had no significant impact on incidence of pests.  相似文献   

10.
Nitrate reductase (NR) activity estimated byin vivo andin vitro methods in 17 days old pea seedlings is the highest in young fully expanded leaves (4th leaf from the stem base). NO3-N content is parallel to the NR activity being also highest in the 4th leaf. On the other hand the activity of glutamine synthetase (GS) is the highest in the youngest leaves which had not yet reached their maximum size (5th leaf). Equilibrium between NO3-N content and activity of enzymes involved in assimilation of nitrogen containing compounds in individual leaves is discussed in relation to their insertion.  相似文献   

11.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

12.
Five hours after cut carnations had been treated with a pulse of 1 or 4 mM silver thiosulfate (STS), in vivo ethylene binding in petals was inhibited by 22 and 29%, respectively. When binding was measured 4 days after the 4-mM STS treatment, binding was inhibited by 81%. 2,5-Norbornadiene, which substantially delays carnation senescence, inhibited ethylene binding by 41% at a concentration of 1000 l/l. The Kd for ethylene binding in carnations was estimated to be 0.1 l/l in petals and 0.09 l/l in leaves. The concentration of binding sites was estimated to be 6.0×10–9 mol/kg of petals and 2.0×10–9 mol/kg of leaves  相似文献   

13.
The regulation of gravistimulation-induced ethylene production and its role in gravitropic bending was studied in Antirrhinum majus L. cut flower stems. Gravistimulation increased ethylene production in both lower and upper halves of the stems with much higher levels observed in the lower half. Expression patterns of three different 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) genes, an ACC oxidase (ACO) and an ethylene receptor (ETR/ERS homolog) gene were studied in the bending zone of gravistimulated stems and in excised stem sections following treatment with different chemicals. One of the ACS genes (Am-ACS3) was abundantly expressed in the bending zone cortex at the lower side of the stems within 2 h of gravistimulation. Am-ACS3 was not expressed in vertical stems or in other parts of (gravistimulated) stems, leaves or flowers. Am-ACS3 was strongly induced by indole-3-acetic acid (IAA) but not responsive to ethylene. The Am-ACS3 expression pattern strongly suggests that Am-ACS3 is responsible for the observed differential ethylene production in gravistimulated stems; its responsiveness to IAA suggests that Am-ACS3 expression reflects changes in auxin signalling. Am-ACS1 also showed increased expression in gravistimulated and IAA-treated stems although to a much lesser extent than Am-ACS3. In contrast to Am-ACS3, Am-ACS1 was also expressed in non-bending regions of vertical and gravistimulated stems and in leaves, and Am-ACS1 expression was not confined to the lower side cortex but evenly distributed over the diameter of the stem. Am-ACO and Am-ETR/ERS expression was increased in both the lower and upper halves of gravistimulated stems. Expression of both Am-ACO and Am-ETR/ERS was responsive to ethylene, suggesting regulation by IAA-dependent differential ethylene production. Am-ACO expression and in vivo ACO activity, in addition, were induced by IAA, independent of the IAA-induced ethylene. IAA-induced growth of vertical stem sections and bending of gravistimulated flowering stems were little affected by ethylene or 1-methylcyclopropene treatments, indicating that the differential ethylene production plays no pivotal role in the kinetics of gravitropic bending.  相似文献   

14.
1,1-Dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS)inhibited ethylene productionin carnation flowers during natural senescence, butdid not inhibit the ethyleneproduction induced by exogenous ethylene in carnationflowers, by indole-3-acetic acid (IAA) in mungbean hypocotylsegments and by wounding in winter squashmesocarp tissue. These findings suggested that DPSSdoes not directly inhibit ethylene biosynthesis fromL-methionine to ethylenevia S-adenosyl-L-methionine and1-aminocyclopropane-1-carboxylate. During naturalsenescence of carnation flowers, abscisic acid (ABA)was accumulated in the pistil and petals 2 days beforethe onset of ethylene production in the flower, andthe ABA content remained elevated until the onset ofethylene production. Application of exogenousABA to cut flowers from the cut stem end caused arapid increase in the ABA content in flower tissuesand promoted ethylene production in the flowers. These results were in agreement with the previousproposal that ABA plays a crucial role in theinduction of ethylene production during natural senescence incarnation flowers. DPSS preventedthe accumulation of ABA in both the pistil and petals,suggesting that DPSS exerted its inhibitory action onethylene production in naturally-senescing carnationflowers through the effect on the ABA-related process.  相似文献   

15.
Ethylene evolution from tobacco leaves irradiated with UV-B   总被引:8,自引:0,他引:8  
Seedlings of Nicotiana tabacum L. (cv. Petit Havana SR1) were grown in the presence or absence of ultraviolet-B (UV-B, 290–320 nm) irradiation. The evolution of ethylene from the leaves, the content of 1-aminocyclopropane-1-carboxylic acid (ACC), an endogenous precursor of ethylene, and the activity of ACC synthase, a rate-limiting step in the production of ethylene, were increased by UV-B irradiation. The time course of these increases was parallel with the emergence of damage that was estimated by measuring the chlorophyll (Chl) content and the leakage of ions from leaf cells. Treatment of leaves with aminoethoxy-vinyl-glycine (AVG), a specific inhibitor of ACC synthase, reduced the extent of damage caused by UV-B. These results suggest that ethylene acts on certain processes to cause damage in tobacco leaves irradiated with UV-B. Electronic Publication  相似文献   

16.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

17.
In isolated leaves ofBryophylluni crenatum the intensity of marginal bud formation decreases from the apex towards the blade base, which is associated with the decreasing content of enioganous gibberallins. As proved by Dostál (1930), the formation of marginal buds on transversely divided blade of the isolated leaf increases in comparison with the non-divided control leaf. The results of our experiments have revealed that the increase in the formation of marginal buds in the blade transversely divided into the apical, middle and basal parts is connected with the increasing level of endogenous gibberellins, especially in the apical part. This rising level appears as early as 7 days following blade division,i.e. at the time preceding the formation of marginal bud bases. InBryophyllum crenatum plants the level of endogenous cytokinins was estimated in apical, middle and basal leaves, as well as in adjacent internodia. Maximum content was found out in the leaves from the middle stem part, which is probably associated with the capacity of this part to form marginal buds spontaneously also in intact plants. However, prior to flowering the maximum of cytokinin activity is shifted to the apical stem part.  相似文献   

18.
Fragments of the desert moss Syntrichia caninervis Mitt. were grown on the surface of moistened sand to assess their regeneration capacity. The plant material was collected in two different years (2014 and 2015) and divided into five fragment classifications (stem apices, green leaves, yellow-green leaves, brown leaves and stems). All fragments of the stem apices, green leaves and stems regenerated within 10 days of culture while some fragments of yellow-green leaves (two 2014 fragments and one 2015 fragment) and brown leaves (three 2014 fragments and three 2015 fragments) died. Fragments of stem, stem apices and green leaves regenerated more quickly, produced longer protonemata and more shoots as compared to fragments of yellow-green and brown leaves. These differences were statistically significant but there was no difference in regeneration between the fragments from 2014 and 2015. Differential regeneration and proliferation of different plant fragments has important implications for the clonal propagation of S. caninervis in the Gurbantunggut Desert.  相似文献   

19.
Hypocotyl segments of Phaseolus vulgaris produce ethylene at pH 8.0 and ethane at pH 5.4. Ethylene formation, but not ethane formation, was stimulated by methionine, while -linolenic acid stimulated both ethylene and ethane formation. Detached primary leaves of var. Favorit (susceptible to Uromyces phaseoli) show no enhanced ethylene formation, whereas primary leaves from var. 017 (hypersensitive) exhibit two distinct ethylene peaks ca. 10 h and 50 h after inoculation with U. phaseoli.Cell wall preparations from uredospore germ tubes of U. phaseoli strongly stimulate ethylene formation in hypocotyl segments of the hypersensitive var. 017 but to a much lesser extent in the susceptible var. Favorit.Abbreviation UCP Uromyces Cell Wall Preparation  相似文献   

20.
Two maize (Zea mays) inbred lines, A-619, (high DIMBOA content) and W-117 (low DIMBOA content) were artificially infested, at similar physiological stages, with 10 first-instar larvae of Sesamia nonagrioides. The DIMBOA concentration in stem and leaf tissues of damaged and undamaged plants was measured quantitatively in response to larval attack. After 60 h of infestation, both inbred lines were found to respond to insect attack by increasing significantly (P< 0·01) the DIMBOA content in leaf tissues compared with uninfested controls. Similar results were observed 5 days after infestation. No significant differences were found between the stem tissues of the two cultivars during this period. After 9 days infestation, significant increases (P <0·01) could still be found in the stem tissues of the two lines, these showing signs of wounding due to direct insect damage. Thereafter, until day 25 following infestation (the last day of measurement) no significant increased level of DIMBOA was recorded in stem and leaves of the infested lines in any sampling. The production of this compound appears to be a physiological response of the plant to attack induced by physical disruption of its tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号