首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
企鹅珍珠贝不同地理群体遗传多样性的fAFLP分析   总被引:1,自引:0,他引:1  
为阐明企鹅珍珠贝(Pteria penguin)不同地理种群的遗传多样性机制, 采用荧光标记扩增片段长度多态性(fAFLP)技术分析了企鹅珍珠贝广西涠洲岛、广东流沙湾和海南黎安 3 个不同地理群体的遗传多样性。选取 7 对引物组合对 90 个个体(每个群体 30 个)进行 fAFLP 扩增, 结果发现每个个体均能扩增出清晰的、可重复的扩增条带, 每对引物的扩增位点数在 100—163 之间, 共得到 895 个扩增位点, 多态位点数为 865 个; 涠洲岛、流沙湾和黎安群体的多态位点比例分别为 70.73%、63.13%、66.82%。Nei 遗传多样性指数为 0.1634、0.1558、0.1783, Shannon 遗传多样性指数为 0.2635、0.2474、0.2932。3 个群体间遗传相似度在 0.9722—0.9824之间, 遗传距离在 0.0177—0.0282 之间。根据遗传距离绘制 UPGMA 聚类图, 但 Mantel 检验结果显示企鹅珍珠贝三群体间的遗传距离与地理距离之间无显著相关。Shannon 遗传多样性指数和 AMOVA 分析, 结果均显示企鹅珍珠贝的遗传变异主要来源于群体内个体间, 7.91%的遗传变异来自群体间, 92.09%的遗传变异来自群体内。分析群体的显性基因型频率分布和基因流 Nm发现 3 个群体有基本相同的遗传结构, 有明显的基因交流。研究结果表明北海涠洲岛群体、湛江流沙湾群体和海南黎安群体的企鹅珍珠贝种质有较高的多态位点比例, 但未发生显著地理分化。这一结果为我国企鹅珍珠贝的良种选育以及种质资源保护措施的制定提供了参考依据。  相似文献   

2.
胡麻种质资源遗传多样性及亲缘关系的SRAP分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用SRAP分子标记,对国内外5个不同地区161份胡麻种质资源的遗传多样性及亲缘关系进行研究,为胡麻育种提供科学依据。结果表明:(1)20对引物扩增出307个条带,其中有192个多态性条带,多态比率为62.54%,平均每对引物组合有9.60个多态性位点,每对引物的多态性信息量(PIC)为0.51~0.76,平均为0.61。(2)有效等位基因数(Ne)、香浓信息指数(I)和Neis遗传相似系数(H)在物种水平上分别为1.582 0、0.521 1和0.346 5,在群体水平上分别为1.491 1、0.431 1和0.286 3。(3)各群体遗传多样性指数表现为中国西北群体中国华北群体美洲群体亚洲群体欧洲群体。(4)聚类分析结果显示,在遗传相似系数为0.335 5处,将161份胡麻资源分为2大类;在0.455 0处,分为5个亚类,与国内外5个不同地区来源吻合。研究表明,中国西北地区胡麻品种(系)的遗传多样性最为丰富;地域是影响胡麻种质资源遗传多样性的主要因素;国内、外品种(系)间的遗传差异较大,表现出较远的亲缘关系。  相似文献   

3.
短沟对虾两个野生群体遗传多样性的RAPD分析   总被引:2,自引:0,他引:2  
谭树华  王桂忠  林琼武  李少菁 《生态学报》2006,26(11):3907-3911
利用RAPD标记技术检测了厦门和汕头沿海2个短沟对虾群体基因组DNA的多态性,并对其遗传多样性进行了分析。从40条随机引物中筛选出13个10bp引物。共扩增出65条清晰可重复的DNA片段,片断长度为100—2200bp,在2个群体间没有检测到特异的片段。厦门和汕头群体的多态片段比例分别为87.69%和89.23%,杂合度分别为0.212和0.218,遗传多样性指数分别为0.2847和0.2913,两群体间的遗传距离为0.018,FST值为0.004。可见两野生群体种质资源仍然维持在良好水平,遗传分化程度很低,可能是同一种群,具有进一步开发的潜力。  相似文献   

4.
利用扩增片段长度多态性(AFLP)技术,对大连旅顺养殖杂交群体(DL)、大连獐子岛养殖群体(DZ)和大连金州养殖杂交群体(DJ)、日本引进的野生皱纹盘鲍群体(JD)和山东青岛养殖杂交群体(SQ)的遗传多样性进行了研究。6对引物组合扩增得到424个位点,其中412个为多态位点,总多态位点比例为97.17%,5个群体的多态位点比例在52.83%~78.07%,平均为66.56%。5个群体的平均杂合度分别为0.2389、0.1803、0.2480、0.2010和0.2637,平均为0.2264。3个养殖杂交群体(DL、DJ和SQ)的遗传多样性水平高于日本野生群体和大连獐子岛养殖群体(p<0.05)。根据群体之间遗传距离及UPGMA聚类分析显示,大连獐子岛群体(DZ)单独成为一支,日本野生群体(JD)与其余3个养殖群体聚在一起。  相似文献   

5.
黔南60份茶树种质资源遗传多样性的SSR分析   总被引:1,自引:0,他引:1  
为探索黔南野生茶树种质资源的遗传多样性,利用SSR分子标记技术,对黔南60份茶树资源进行了DNA遗传多样性分析。结果表明:15对引物均显示多态性,基因多态性百分率为98.64%。15对SSR引物共扩增出147个观测等位基因和73.778 6个有效等位基因,平均每个引物扩增9.8个观测等位基因,4.918 6个有效等位基因。15个通用位点共产生280种基因型,平均每个位点18.7种基因型。遗传多态信息量变异范围为0.123 9~0.926 8,平均0.572 5,平均观测杂合度、平均期望杂合度和平均Shannons信息指数分别为0.470 0、0.602 3、1.464 4。经聚类分析后,60份材料间遗传相似系数在0.205 1~0.863 6之间,以平均遗传相似系数0.477 5为阈值,可将60份种质资源聚为8个类群,其在分子遗传水平上的分类结果与其材料来源分类的结果并不完全一致,而且材料来源地间遗传距离与地理距离不存在显著的相关性,有少部分同一来源的材料分散在各个类群中。研究认为,黔南茶树资源间的遗传差异较大,遗传基础较宽,具有丰富的遗传多样性。  相似文献   

6.
三个地理群体赤眼鳟遗传多样性的RAPD分析   总被引:1,自引:0,他引:1  
利用RAPD技术对宿鸭湖、青龙湖和丹江口水库3个野生赤眼鳟群体的遗传多样性进行分析.9个RAPD引物共获得93个扩增位点,其中多态位点56个,多态位点比例为60.22%.3个群体的多态位点比例分别为53.01%、54.12%和57.95%,遗传距离分别为0.1548、0.1613和0.1764,Shannon信息指数分别为0.2249、0.2318和0.2437.群体间遗传距离以宿鸭湖和青龙湖群体最近(0.1257),青龙湖与丹江口水库群体最远(0.1416).结果表明3个赤眼鳟群体的遗传多样性均较丰富,但群体间地理遗传分化差异并不明显.  相似文献   

7.
东北大口鲇2个群体的微卫星DNA多态分析   总被引:3,自引:1,他引:2  
全迎春  孙效文  梁利群 《遗传学报》2006,33(10):908-916
利用磁珠富集法克隆制备的24个大口鲇(Silurus meriaionalis Chen)微卫星标记,对黑龙江野生群体与松花江养殖群体2个东北大口鲇(S.soldatovi)的地理种群的等位基因频率(P)、观测杂合度(Ho)、期望杂合度(He)、多态信息含量(PIC)和有效等位基因数(Ne)等进行了遗传检测,以遗传偏离指数(d)检验Hardy—Weinberg平衡,并以Nei氏遗传分化系数(GST)和AMOVA分析(ФST)群体遗传变异的来源。同时,使用PHYLIP3.63软件绘制基于Nei氏遗传距离的个体间UPGMA系统树。结果表明:24个微卫星标记在东北大口鲇的2个群体中共扩增出1357条多态性片段,片段长度为1024385bp,总体平均等位基因8.875个,可以用于东北大口鲇遗传多样性的评估。并发现8个可区分这2个种群的遗传标记;黑龙江群体的P、Ho、He、PIC和Ne依次为0.165、0.435、0.758、0.742和5.019,松花江群体为0.147、0.299、0.847、0.764和5.944,在这些多样性参数上,方差分析也显示2地理种群差异不显著,在大多数位点并无显著差异,仅HLJcf37位点具有显著差异:在多个位点偏离Hardy—Weinberg平衡,2群体呈现不同程度的杂合体过度,纯合体完全缺失现象,其原因有待证实;群体遗传变异分析证实2群体间遗传分化较弱,其98%以上的变异是由群体内个体间的遗传变异引起的,群体间的变异对总变异影响不显著。UPGMA系统树也显示出个体间遗传距离小,亲缘关系很近。结果表明,人工繁殖没有对东北大口鲇的遗传多样性产生影响,该种群遗传分化小,种质资源状况良好。  相似文献   

8.
引进美洲红点鲑群体遗传多样性微卫星的分析   总被引:1,自引:0,他引:1  
为了解引进种美洲红点鲑种群遗传结构和种质资源现状,本研究利用15个微卫星标记对其养殖群体遗传多样性进行了分析。结果表明:在30个个体中,15对微卫星引物除1对扩增产物为单态外,其余14对在美洲红点鲑群体内扩增均出现了多态,14个多态性位点等位基因数目为3~7不等,共检测到等位基因数为69个,平均有效等位基因数为3.03;期望杂合度在0.540~0.809之间,平均期望杂合度为0.664;多态信息含量在0.360~0.719之间,平均多态信息含量为0.578,表明引进的美洲红点鲑遗传多样性水平较高,具有良好的选育潜力,可以作为良好的育种材料。  相似文献   

9.
真鲷自然群体和人工繁殖群体的遗传多样性   总被引:42,自引:3,他引:39  
采用RAPD技术对真鲷野生群体及人工繁殖群体各23个个体进行了DNA多态性检测。实验选取OPK组16个10 bp随机引物用于两群体的遗传多样性分析。在野生群体和人工繁殖群体中分别获得131和123条扩增片段,两群体的多态片段比例分别为62.60%和54.47%,平均杂合度分别为0.4786和0.3633,可见真鲷野生群体及人工繁殖群体的遗传多样性较为丰富,在选择育种和遗传改良方面具有较大的潜力。人工繁殖群体的多态片段比例和平均杂合度都低于野生群体,意味着在生产过程中要采取行之有效的管理保护措施以避免或减少遗传多样性水平的降低,确保真鲷增养殖业的可持续发展。  相似文献   

10.
野生杏和栽培杏的遗传多样性和遗传结构分析   总被引:1,自引:0,他引:1  
利用SSR分子标记结合荧光毛细管电泳检测技术,研究了野生杏和栽培杏的遗传多样性和遗传结构,结果显示:27个SSR位点,平均每个位点检测到17.82个等位基因(Na)和7.44个有效等位基因(Ne),平均Shannon's信息指数(I)为2.23,平均期望杂合度(He)和观察杂合度(Ho)分别为0.70和0.52。基于SSR位点,群体水平上平均等位基因数、有效等位基因数、期望杂合度、观察杂合度和Shannon's信息指数分别为6.59、4.15、0.70、0.53和1.50,说明我国杏种质资源遗传多样性丰富,其中野生杏资源遗传多样性明显高于栽培杏资源,野生杏中西伯利亚杏种质遗传多样性最高且具有较多的特异等位基因,而栽培杏中仁用杏遗传多样性最低,特有等位基因较少。聚类分析将供试159份种质分为4组。群体遗传结构分析将159份种质划分为5个类群,分类情况与传统形态指标划分基本一致。通过本研究可知,我国杏资源遗传多样性丰富,遗传结构较为复杂;西伯利亚杏与栽培杏亲缘关系较远;野生普通杏与栽培杏具有类似的遗传结构,推测野生普通杏为栽培杏原始种;仁用杏遗传多样性较低,遗传背景狭窄。本研究结果可为杏资源新品种选育及持续利用提供重要的理论依据。  相似文献   

11.
福建南北泥蚶种内分化的RAPD分析   总被引:13,自引:0,他引:13  
采用随机扩增多态性DNA(RAPD)技术,对泥蚶在福建以南(广东汕头和湛江)和福建以北(浙江温岭和韩国)种群(分别合称南方类群和北方类群)做了遗传分化研究。由筛选出的20个随机引物共获得103个清晰可辨的RAPD标记,扩增片段长度在250—2500bp。汕头种群与湛江种群,韩国种群与温岭种群之间的最小遗传距离分别为0.0612和0.0692,而南、北类群间的遗传距离却在0.3261-0.4511。类群间近交系数也大于类群内。NJ和UPGMA法构建的系统树均显示汕头种群、湛江种群首先聚在一起,再与温岭种群和韩国种群聚合,说明两个类群发生了较明显的遗传分化,估计与地理隔离有关。  相似文献   

12.
基于线粒体COI基因序列探讨泥蚶的遗传分化   总被引:7,自引:1,他引:6  
采用PCR技术对我国沿海地区7个泥蚶群体的线粒体COI基因部分序列进行了测定和遗传分析。在来自7个群体的38个泥蚶样本均得到660 bp的COI基因片段序列,共103个多态位点,组成17种单倍型;数据分析表明:7个群体形成了二大类群:福建以北(包括福建)的5个群体(江苏盐城、浙江奉化、浙江乐清养殖和自然群体、福建福鼎)形成一个类群,类群内的遗传距离为0.0016;福建以南的类群(广东湛江、海南海口)形成一个类群,遗传距离为0.0006;二个类群之间的遗传距离为0.1529,表现为高度的分化。因此我国沿海泥蚶已分化形成福建以南和以北二大类群,二大类群之间的遗传分化已达到亚种水平。  相似文献   

13.
运用RAPD分子标记技术对山核桃种质资源的五处天然居群遗传多样性进行了初步研究。20条10bp随机引物共检测出252个扩增位点,其中多态性位点168个,多态性位点比率为66.7%。依据Shannon’s表型多样性指数,山核桃种质资源的遗传多样性水平相对较高,群体内变异占总变异的60.32%,居群间变异率为39.68%。五处天然居群中,岛石居群遗传多样性水平最高,为0.2800,临目居群最低,为0.1992。群体内平均遗传距离为0.0914,居群间平均遗传距离为0.1188。丰富的遗传多样性可保证山核桃种质群体能够持续生存和发育,也为山核桃选优、品种改良及遗传育种工作奠定了遗传学基础。  相似文献   

14.
大别山山核桃种群遗传多样性研究   总被引:5,自引:1,他引:4       下载免费PDF全文
 为了更有效地保护和合理开发大别山山核桃(Carya dabieshanensis)资源,该文利用RAPD分子标记技术,对3个天然大别山山核桃种群的90个单株的遗传多样性、种群内和种群间的遗传变异进行了研究, 结果表明:20对10 bp随机引物共检测到238条谱带,其中多态带为162条,占68.1%。遗传多样性分析结果显示:Shannon多样性指数为0.476 1,58.18%的变异分布于群体内,而种群间变异占了41.82%;Nei指数群体总基因多样度为0.314 5,群体内平均基因多样度(HS)为0.186 5,群体间的基因多样度(HST)为0.128 0,群体Nei基因分化系数(GST)为0.406 7,说明40.67%的变异存在于种群间,群体内的变异占了总变异的5 9.33%,与Shannon多样性指数相比基本一致,均表明种群内有较丰富的遗传变异,这为优良品种选育提供广阔前景;种群间的基因流(Nm)为0.730 6,证明种群间遗传交换较小, 这与环境适应性和高山阻隔有一定的关系。  相似文献   

15.
Wang JL  Zhao NX  Gao YB  Lin F  Ren AZ  Ruan WB  Chen L 《Genetika》2006,42(5):587-594
Random amplified polymorphic DNA (RAPD) analysis was used to characterize the genetic diversity and population genetic structure of Stipa krylovii populations in Inner Mongolia steppe of North China. Thirteen 10 bp oligonucleotide primers, which generated 237 RAPD bands, were used to analyze 90 plants of five populations from three regions, meadow steppe, typical steppe and desert steppe, from the east to the west. The genetic diversity of Stipa krylovii that was revealed by observed number of alleles (na), expected number of alleles (ne), Nei's diversity index (h), Shannon's diversity index (H), amplificated loci, polymorphic loci and the percentage of polymorphic loci (PPB) increased from the east to the west. The Pearson's correlation analysis between genetic diversity parameters and ecological parameters indicated that the genetic diversity of Stipa krylovii was associated with precipitation and cumulative temperature variations along the longitude (humidity were calculated by precipitation and cumulative temperature). Dendrogram based on Jaccard's genetic distance showed that the individuals from the same population formed a single sub-group. Although most variation (56.85%) was within populations, there was high genetic differentiation among populations of Stipa krylovii, high differentiation within and between regions by AMOVA analysis. Either Nei's unbiased genetic distance (G(ST)) or gene flow (Nm) among pairwise populations was not correlated with geographical distance by Mantel's test (P > 0.05), suggesting that there was no consistency with the isolation by distance model in these populations. Natural selection may have played a role in affecting the genetic diversity and population structure, but habitat destruction and degradation in northern grassland in China may be the main factor responsible for high genetic differentiation among populations, within and among regions.  相似文献   

16.
Amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers were used to provide estimates of the comparative genetic variation within and among populations of various Guizotia taxa with the goal of conserving and utilizing their genetic diversity. The percentage of polymorphic loci (P(S)) ranged from 28.5%-90% (AFLP) and 85.6%-99.6% (RAPD). The overall gene diversity estimate () has shown slight variation among taxa ranging from 0.32-0.37 (AFLP) and from 0.22 to 0.28 (RAPD). The within population diversity of "Chelelu" and "Ketcha" was found to be unexpectedly high. Both parameters used to estimate population differentiation (G(ST) and F(ST)) revealed the highest population differentiation G. zavattarii in followed by G. arborescens. Genetic variation among populations within a taxon was highly significant for all the five taxa as revealed by AMOVA (P<0.0001). The need for immediate conservation activities for G. arborescens and G. zavattarii, and factors that contribute to the existing genetic variability and population genetic structures are discussed.  相似文献   

17.
DNA barcoding is a promising tool for the rapid and unambiguous identification of species. Some arcoid species are particularly difficult to distinguish with traditional morphological identification owing to phenotypic variation and the existence of closely related taxa. Here, we apply DNA barcoding based on mitochondrial cytochrome c oxidase I gene (COI) to arcoid species collected from the coast along China. Combining morphology with molecular data indicates the 133 specimens of Arcoida could be assigned to 24 species. Because of the deep genetic divergence within Tegillarca granosa, there was an overlap between genetic variation within species and variation between species. Nevertheless, NJ and Bayesian trees showed that all species fell into reciprocally monophyletic clades with high bootstrap values. Our results evidence that the COI marker can efficiently identify species, correct mistakes caused by morphological identification and reveal genetic differentiation among populations within species. This study provides a clear example of the usefulness of barcoding for arcoid identification. Furthermore, it also lays a foundation for other biological and ecological studies of Arcoida.  相似文献   

18.
松江鲈鱼野生群体遗传多样性的RAPD分析和SCAR标记的转化   总被引:2,自引:0,他引:2  
Zeng Z  Liu ZZ  Pan LD  Tang WQ  Wang Q  Geng YH 《动物学研究》2012,33(2):203-210
首先,从294条10个碱基随机引物中,筛选出32条多态性引物,对富春江、黄河、滦河和鸭绿江等4个松江鲈鱼(Trachidermusfasciatus)野生群体共120尾个体进行RAPD分析。结果表明,松江鲈鱼野生群体的遗传多样性较丰富,其主要表现在:①在扩增得到的591个位点中,有515个(87.14%)位点呈现多态性,群体间多态位点比率(P)的大小顺序为:富春江群体89.17%>黄河群体87.99%>鸭绿江群体86.63%>滦河群体83.25%。②松江鲈鱼群体间的Shannon信息指数(IT)和Nei’s遗传多样性指数(HT)分别在0.3393~0.3566和0.2157~0.2279间,滦河群体的值较其他3群体稍低;若作为一个整体,则总的Shannon信息指数(IT)和Nei’s遗传多样性指数(HT)分别为0.3710±0.2153和0.2336±0.1643。③虽然群体间基因流值(Nm)在5.76103~19.84497间,显示各地理群体间存在程度不同的基因交流,但分子方差分析(AMOVA)结果却表明,各群体间存在显著(P<0.05)或极显著(P<0.01)的遗传分化。④聚类分析表明,鸭绿江群体首先与黄河群体聚为一支,再与富春江群体相聚,最后与单独一支的滦河群体聚类,表明鸭绿江、黄河、富春江等3群体间的遗传距离与彼此间的地理距离远近密切相关,而滦河群体与它们的遗传距离较远。其次,从获得的S1225525bp、S1225605bp、S1225841bp、S1345695bp、S1345825bp等5个特异RAPD条带中,成功地由S1225605bp、S1225841bp条带分别转化出SCAR01560bp、SCAR02443bp的SCAR标记。这两个标记的出现频率,在鸭绿江群体最高(96.67%和93.33%)、富春江群体其次(83.33%和90%)、黄河群体再其次(56.67%和66.67%)、滦河群体最低(13.33%和20%)。因此,SCAR01560bp、SCAR02443bp可作为鉴别松江鲈鱼滦河群体与其他3群体的分子标记。  相似文献   

19.
Random amplified polymorphic DNA (RAPD) markers were used to provide estimates of the comparative genetic variation within and among four native populations of Schizachyrium scoparium . Genotypes were collected from high- and low-fertility sites in both New Jersey (forest biome) and in Oklahoma (grassland biome), USA, and propagated in the greenhouse. Four oligonucleotide primers, 10 bp in length, produced a total of 60 RAPD markers, with the minimum marker difference between any two individuals being 14 markers. Euclidean metric distances were calculated among all individuals, and the analysis of molecular variance ( AMOVA ) technique was used to apportion the total genetic variation among individuals within populations, populations within fertility levels, populations within biomes, fertility levels, and biomes. Even though most genetic variation resided within populations, statistically significant differences were detected between populations within each biome. Furthermore, genetic distances between high and low fertility levels within biomes were equal to or greater than biome distances. Therefore, in this wide-ranging and highly variable species, RAPD analysis suggests that local site differences in fertility and ecological history can promote genetic differentiation equal to or greater than geographical differentiation.  相似文献   

20.
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P < 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P < 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P < 0.001), as well as 72.59% variation within populations (P < 0.001). Molecular variation within populations was significantly different among 16 populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号