首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
山溪鲵卵巢滤泡细胞的显微与超微结构   总被引:7,自引:0,他引:7  
对两栖类卵巢滤泡细胞的研究已有一些报道。Thornton等 ( 1973)用电镜观察比较了蟾蜍 (Bufobufo)的成熟滤泡细胞和排卵后滤泡细胞 ,认为两栖类没有膜细胞和颗粒细胞的分化。Dumont等 ( 1978)较为系统地观察并描述了光滑爪蟾 (Xenopuslaevis)卵泡壁的超微结构。Kwon等( 1994)对黑斑蛙 (Rananigromaculata)卵巢组织细胞的离体培养研究表明 ,其类固醇激素的生成是在卵泡壁上完成的 ,并提出了两栖类卵泡类固醇生成的两类细胞模型。但目前有关有尾两栖类滤泡细胞结构与功能的研究仍少见…  相似文献   

2.
剑尾鱼卵子发生的组织学观察   总被引:1,自引:0,他引:1  
应用光学显微镜对卵胎生硬骨鱼类剑尾鱼(Xiphophorus helleri)卵巢的组织结构进行了观察。结果显示,剑尾鱼卵子的发育过程可划分为6个时相。Ⅰ时相的卵母细胞呈原始分化状态,细胞外具一层细胞质膜。Ⅱ时相卵母细胞外不仅具有质膜,而且还包绕一层滤泡细胞。Ⅲ时相和Ⅳ时相的卵母细胞分化明显,胞质内开始积累脂滴和卵黄颗粒。Ⅴ时相为成熟卵子,卵子的卵膜极薄,胞质内含有丰富的脂滴和卵黄。Ⅵ时相卵母细胞进入退化期,滤泡细胞从卵周向中央突入,卵黄被完全吸收,滤泡细胞自身也变得肥大。结果表明,剑尾鱼卵巢中卵母细胞的发育是不同步的。  相似文献   

3.
长吻鮠的卵巢发育和周年变化及繁殖习性研究   总被引:6,自引:0,他引:6  
本文报道了长吻卵巢发育与周年变化特点和繁殖习性。依外形和组织学特征,性成熟前至性成熟鱼卵巢的发育可分为卵原细胞期、单层滤泡期、卵黄泡期,卵黄充满期、成熟期和退化期6个时期,Ⅰ期性腺只存在于1龄内个体,Ⅱ期性腺持续2年左右,性成熟前发育至Ⅲ期,经Ⅳ、Ⅴ期发育至成熟并首次参与繁殖,最小性成熟个体3龄。性成熟后个体卵巢的发育只有后5个时期。繁殖期4—6月,产后卵巢很快退回到Ⅱ期,Ⅲ期卵巢越冬。一次产卵类型。卵壳膜源于滤泡细胞。卵粒的退化吸收分5步完成。  相似文献   

4.
绵羊卵泡成分对卵母细胞体外减数分裂调控的研究   总被引:1,自引:0,他引:1  
哺乳动物卵巢中的卵母细胞一直处于减数分裂的停滞状态,卵泡内各成分被认为是产生抑制因子的主要来源。本研究以绵羊卵泡各成分为研究对象,用共培养的方法对卵丘细胞、颗粒细胞、膜细胞在卵母细胞体外减数分裂过程中的作用加以探讨。结果表明:1.卵泡整体及卵泡分泌物在体外可以有效地维持减数分裂停滞,经过24h培养,这两个处理组中,处于GV期的卵母细胞分别为69.6%和49.1%。经抑制处理后的卵母细胞脱离抑制环境后可以继发成熟,MⅡ比率可达88.9%。去掉卵丘细胞的裸卵其减数分裂过程不能被卵泡分泌物有效抑制,24h培养后其GV期比例为17.8%。以上结果说明卵泡中的抑制因子主要是通过卵丘细胞束发挥其调控作用的。2.用颗粒细胞与卵母细胞共培养,结果发现具有颗粒细胞卵丘细胞缝隙连接的卵母细胞(COCGs)在培养24小时后47.4%达到MⅡ,与在不具有细胞连接的总浮颗粒细胞中共培养的卵母细胞之间存在无显差异,无论是紧密连接的颗粒细胞层还是悬浮在培养液中的颗粒细胞都不能有效抑制生发泡破裂(GVBD)的发生,只能将卵母细胞抑制在MⅡ以前的各个时期。以上结果说明颗粒细胞在体外分泌抑制图子的活力大大下降。3.卵泡膜细胞具有分泌抑制成熟分裂因子的能力,与膜细胞层共培养的卵母细胞在8h和24h时,其GV期的比例为34.4%和32.7%,显高于没有膜细胞层的对照组(4.5%和1.1%)。综上所述,绵羊卵泡中的抑制因子不仅来自于颗粒细胞,而且膜细胞也参与了成熟分裂的抑制,这些细胞在体外仍具有分泌抑制因子的能力,只是与体内分泌能力有所不同。  相似文献   

5.
应用光学显微镜对卵胎生硬骨鱼类剑尾鱼(Xiphophorus helleri)卵巢的组织结构进行了观察。结果显示,剑尾鱼卵子的发育过程可划分为6个时相。Ⅰ时相的卵母细胞呈原始分化状态,细胞外具一层细胞质膜。Ⅱ时相卵母细胞外不仅具有质膜,而且还包绕一层滤泡细胞。Ⅲ时相和Ⅳ时相的卵母细胞分化明显,胞质内开始积累脂滴和卵黄颗粒。Ⅴ时相为成熟卵子,卵子的卵膜极薄,胞质内含有丰富的脂滴和卵黄。Ⅵ时相卵母细胞进入退化期,滤泡细胞从卵周向中央突入,卵黄被完全吸收,滤泡细胞自身也变得肥大。结果表明,剑尾鱼卵巢中的卵母细胞的发育是不同步的。  相似文献   

6.
锯缘青蟹卵黄发生期卵母细胞和卵泡细胞之间的结构变化   总被引:24,自引:0,他引:24  
通过电镜研究了锯缘青蟹二次卵巢发育过程中卵黄发生期(分为初期和后期)卵母细胞表面的结构和胞质的变化。卵黄发生初期分为:内源性卵黄发生阶段和有卵泡细胞直接参与的外源性卵黄合成阶段,前者特征为:在卵母细胞中充满了内质网泡,在泡内有不同程度的卵黄物质合成,此时在卵母细胞的表面区域,可见很多卵泡细胞向卵母细胞表面迁移,并包围卵母细胞。后者其特征是在卵母细胞的表面,有大量的胞饮小泡出现在卵膜的内面,随着两细胞表面膜的逐步融合和胞饮作用加强最后形成链锁状结构,胞质中靠近卵质周围有卵黄体的积极合成和大更换 脂肪滴积累,在此阶段的后期,卵泡细胞质已基本吸收完毕,卵泡细胞膜和卵母细胞膜融合,某些界面已无膜结构。卵黄发生后期在亲蟹孵出幼体后的第11d至第27d基本结束,此期也主要以外源性卵黄发生为主,在卵母细胞的周围,卵泡细胞迅速扩大,其间分布着大量的大小不同的囊泡和线粒体,在接近卵母细胞表面,还常可见大量的脂肪滴存在。卵泡细胞与卵母细胞间其膜结构完全消失,从而可使滤泡大片细胞质直接融入卵母细胞中,以后随着卵黄发生的进一步发展,卵母细胞与卵泡细胞的交界面逐步形成一个网状的膜结构屏障,同时在卵巢中可见正在降解的卵母细胞,在卵黄发生近结束以后,在卵母细胞的表面,逐步形成两层卵膜,这时的卵母细胞质中几乎充满了卵黄体和脂肪滴。  相似文献   

7.
大弹涂鱼性腺发育的组织学观察   总被引:2,自引:0,他引:2  
于光镜下对大弹涂鱼性腺切片作了组织学观察,对大弹涂鱼卵细胞和精子发育规律进行研究。结果表明:大弹涂鱼在一个生殖季节中只能产卵1次,大弹涂鱼属于一次性产卵类型。大弹涂鱼3月卵母细胞进入大生长期发育阶段,4—6月为繁殖盛期,7—8月为繁殖末期。10月卵巢基本修整完毕,进入Ⅱ′恢复期。卵细胞发育可分为6个时相:卵原细胞、卵母细胞单层滤泡、卵母细胞出现脂滴和卵黄、卵母细胞卵黄充满、卵母细胞核极化、卵母细胞退化时相。卵母细胞膜单层,由具有辐射纹的放射带构成,滤泡膜细胞分泌而成的次级卵膜成为成熟卵子的附着丝。大弹涂鱼2月精巢开始发育,5月GSI值达最高值,平均成熟系数达0.70%,排精量最旺盛,出现高峰。7—9月GSI值明显下降。11月至翌年2月GSI值波动于0.08%—0.20%之间,变辐小,此期间精巢处于静止发育状态。大弹涂鱼的精巢属于小叶型结构。精子发育分为6个时期:精原细胞期、精原细胞增殖期、精母细胞生长成熟期、精子细胞变态期、精子成熟期和退化吸收期。繁殖季节精小叶内充满精子,精小囊消失。    相似文献   

8.
黄鳝性逆转时生殖腺的组织学与超微结构的变化   总被引:16,自引:4,他引:12  
黄鳝由雌转雄性时,其生殖腺滤泡细胞变得肥大和充满分泌物,卵母细胞的微绒毛、线粒体与放射带退化,卵黄液化。滤泡细胞吞噬卵黄颗粒并消化吸收后,最后形成类胡罗卜素瘤。随着卵巢的退化,精细胞与精巢逐渐形成。  相似文献   

9.
乌梢蛇卵泡不同发育期颗粒细胞的显微结构变化   总被引:2,自引:1,他引:1  
采用光学显微镜主要观察了乌梢蛇(Zaocys dhumnades)卵泡发育过程中颗粒细胞的显微结构变化.结果表明,乌梢蛇的滤泡前体细胞在形态、大小与嗜色性上均与生殖基的表面上皮相似;在原始卵泡期,卵母细胞周围的滤泡前体细胞围绕成一圈;在颗粒层细胞期的时期I至时期Ⅲ,颗粒细胞分化为由小细胞、梨形细胞与中间型细胞构成的异型颗粒细胞;在时期Ⅳ,这些异型颗粒细胞又转变成为只有小细胞的同型颗粒细胞.乌梢蛇卵泡颗粒细胞来源于生殖基的表面上皮,其发育特征是首先由同型发育成为异型,再由异型转变为同型颗粒细胞,具有同源异型的特征.  相似文献   

10.
卵胎生硬骨鱼褐菖鲉卵巢的周期发育研究   总被引:6,自引:0,他引:6  
经组织学观察表明 ,褐菖鲉 (Sebastiscusmarmoratus)的卵巢由卵巢壁、卵巢绒毛和卵巢腔构成。卵巢壁的肌层较厚 ,卵巢上皮具分泌功能。卵巢绒毛位于卵巢腔中 ,呈树枝状。在卵巢绒毛上分布着滤泡。滤泡由卵母细胞和滤泡膜构成。滤泡膜包括内层的颗粒层和外层的鞘膜层。鞘膜层上有丰富的毛细血管。滤泡靠滤泡柄悬挂在卵巢绒毛上。卵巢发育分 7个时期。成熟卵排放在卵巢腔中受精。胚胎浸置在卵巢液中发育。卵巢发育、卵巢成熟系数和卵巢壁厚度随季节呈年周期变化。  相似文献   

11.
The surface of a mature, pelagic C-O sole egg is composed of polygonal chambers having four to eight sides, most of which are hexagonally shaped. This honeycomb pattern initially appears on primary oocytes as a thin layer of compact, electron-dense material. Discrete thickenings begin to develop on the envelope of perinuclear stage oocytes. The thickenings lengthen and thin to form the hexagonal walls of the envelope in oocytes undergoing yolk vesicle formation. The walls of each hexagonal chamber occur in an area corresponding to the lateral margins of the adjacent follicle cell, suggesting that the hexagonal walls are produced by the follicle cells. The hexagonal layer is nearly complete at the beginning of vitellogenesis, and as vitellogenesis continues, a striated envelope layer composed of fibrillar lamellae develops between the oocyte and the hexagonal layer. The striated layer appears to be secreted by the oocyte. After vitellogenesis is completed, oocytes are ovulated and double in size during a period of maturation. Concurrently, the striated primary envelope stretches and thins into eight to nine horizontal lamellae. On the mature egg surface, the polygonal chambers are about 24–31 μm in diameter. Within each chamber there is a subpattern of polygonal areas; each polygon is 1.5–2.0 μm in diameter, and circumscribes a pore canal opening. This exceptional envelope may furnish the egg with some degree of protection, resiliency, and buoyancy, but its specific functions are not known.  相似文献   

12.
P. R. Boyle    D. Chevis 《Journal of Zoology》1992,227(4):623-638
The development of egg/follieular cell complexes is described in maturing females of the octopus Eledone cirrhosa. Follicle cells proliferate to enclose the oocyte in a single epithelial layer which becomes deeply infolded. Active cell division of the follicle cells and recruitment of cells from an outer (thecal) layer generate this expansion of follicle cell epithelium. The onset of the main phase of vitellogenesis, secretion of protein yolk, occurs when eggs reach about 2 mm in length and is marked by the columnar appearance of the follicle cells and an increased number of larger and more complex nuclei. A significant proportion of the egg population fails to develop beyond 2–3 mm in length and these eggs subsequently degenerate.  相似文献   

13.
The relationship of the cells and tissues which comprise the developing ovarian follicle in Xenopus laevis has been studied with scanning and transmission electron microscopy. The saclike ovary is covered on its coelomic side by a squamous epithelium. The cells of this epithelium are extensively interdigitated, and each bears a short, centrally positioned cilium. The lumenal surface of the ovary is covered with a layer of nonciliated squamous cells. The areas of cell-cell contact are characterized by desmosomes in both epithelia, and between the epithelia lies a connective tissue layer-the theca-which contains collagen fibers, blood vessels, nerves, smooth muscle cells and oogonia. Beneath the theca in each follicle lies a single layer of flat stellate follicle cells. Associations between adjacent follicle cells are intermittent, leaving wide spaces or channels. Junctional contacts between neighboring follicle cells are characterized by desmosomes. From the basal surface of each follicle cell extend long, broad macrovilli which penetrate the underlying acellular vitelline envelope and contact the surface of the oocyte. Evidence is presented which suggests that follicle cells may produce and release components which participate in the formation of the vitelline envelope which consists of a 3-dimensional lattice of ropey fibers. Passageways through the vitelline envelope allow the maintenance of contact between oocyte and follicle cells and also allow ready penetration of materials both to the oocyte (e.g., vitellogenin) and from it (e.g., cortical granule material) at different stages of its development.  相似文献   

14.
Summary The process of egg segregation in the tunic of the ovoviviparous ascidian Diplosoma listerianum was studied by light and electron microscopy. One egg at a time was seen to mature in each zooid. The eggs had large yolk and grew on the ovary wall enveloped in four layers: (1) outer follicle cells (OFC), long and rich in RER (rough endoplasmic reticulum) and with dense granules in the Golgi region; (2) flat inner follicle cells (IFC); (3) a loosely fibrillar vitelline coat (VC); (4) test cells encased on the egg surface. The growing egg protrudes from the ovary wall and presses on the contiguous epidermis. Granulocytes enter the space between the epidermis and the egg and insinuate cytoplasmic protrusions, disrupting the continuity of the OFC layer. At ovulation, OFC and IFC are discharged and form a post-ovulatory follicle (corpus luteum). The epidermis shrinks and closes, possibly by activation of microfilaments, causing the egg to be completely surrounded by the tunic. In the zooid, the wound caused by the passage of the egg is repaired both by contraction of the epidermis and by phagocytic activity. Altered spermatozoans are found in phagocytosing cells in the lumen of the ovary. These are presumably remnants of those which entered to fertilize the egg before segregation.  相似文献   

15.
大阪鲫鱼两种卵黄蛋白免疫细胞化学的研究   总被引:4,自引:0,他引:4  
李朝军  刘荣臻 《动物学报》1994,40(3):324-330
以电泳提纯的卵黄脂磷蛋白和卵黄蛋白L制备兔抗两种蛋白的抗血清,采用PAP法对性腺成熟雌性大阪鲫鱼的肝细胞和卵母细胞进行两种蛋白免疫细胞化学位研究。肝细胞的粗面内质网上有强烈的卵黄脂磷蛋白的阳性反应,特别是在线粒体的基质中也发现卵黄脂磷蛋白的阳性反应,而另外一种类似于卵黄高磷蛋白的卵黄蛋白-卵黄蛋白L在肝细胞的粗面内质网和线粒体均呈现阴性反应,提示卵黄脂磷蛋白的前体物质存在于肝细胞的粗面内质网和线粒  相似文献   

16.
Glossiphonia heteroclita has paired ovaries whose shape and dimensions change as oogenesis proceeds: during early previtellogenesis they are small and club-shaped, whereas during vitellogenesis they broaden and elongate considerably. During early oogenesis (previtellogenesis), each ovary is composed of an outer envelope (ovisac) that surrounds the ovary cavity and is filled with hemocoelomic fluid, in which a single and very convoluted ovary cord is bathed. The ovary cord consists of germline cells, including nurse cells and young oocytes surrounded by a layer of elongated follicle cells. Additionally, follicle cells with long cytoplasmic projections occur inside the ovary cord, where they separate germ cells from each other. The ovary cord contains thousands of nurse cells. Each nurse cell has one intercellular bridge, connecting it to a central anucleate cytoplasmic mass, the cytophore (rachis); it in turn is connected by one intercellular bridge with each growing oocyte. Numerous mitochondria, RER cisternae, ribosomes, and Golgi complexes are transported from the nurse cells, via the intercellular bridge and cytophore, to the growing oocytes. Oogenesis in G. heteroclita is synchronous with all oocytes in the ovary in the same stage of oogenesis. The youngest observed oocytes are slightly larger than nurse cells, and usually occupy the periphery of the ovary cord. As previtellogenesis proceeds, the oocytes gather a vast amount of cell organelles and become more voluminous. As a result, in late previtellogenesis the oocytes gradually protrude into the ovary cavity. Simultaneously with oocyte growth, the follicle cells differentiate into two subpopulations. The morphology of the follicle cells surrounding the nurse cells and penetrating the ovary cord does not change, whereas those enveloping the growing oocytes become more voluminous. Their plasma membrane invaginates deeply, forming numerous broad vesicles that eventually seem to form channels or conducts through which the hemocoelomic fluid can easily access the growing oocytes.  相似文献   

17.
Summary The follicular epithelial layers of the developing ovary of two cichlid species were examined by electron microscopy for evidence of steroid secretion. As each oocyte grew, its follicular cell layers increased in height, eventually becoming somewhat columnar; no development could be detected in follicle cells of non-activated oocytes. Isolated cells close to capillaries in the thecal layer developed large amounts of smooth membrane indicative of steroidogenesis, appearing similar at maturity to testicular Leydig cells. In Cichlasoma nigrofasciatum the mitochondria of differentiated thecal elements contained microtubule-like inclusions. It is suggested that these cells may produce estrogens during vitellogenesis.In developing granulosa cells, active synthesis of granular endoplasmic reticulum occurred. This membrane appeared to arise from the nuclear envelope, and in the pre-ovulatory stage was always intermediate between smooth and granular forms, being only partly associated with ribosomes. Evidence for steroid biosynthesis in the granulosa at this time was therefore equivocal. Evidence was found of transfer of micropinocytotic vesicles from the granulosa cells into the ooplasm.The fate of the post-ovulatory follicle was investigated in Cichlasoma. Thecal elements remained separate from granulosa and unchanged in ultrastructure for up to ten days. The granulosa cells proliferated and differentiated within a few hours after ovulation into a cell type containing much smooth reticulum, characteristic of steroidogenesis. However, after approximately three days numerous signs of degenerative processes became visible. The significance of the observed ultrastructural changes in relation to endocrine function is discussed.  相似文献   

18.
To investigate the internal fertilization of the guppy Poecilia reticulata, the present electron microscopic observations were focused on the morphology of the sperm storage site in females. In the ovary of the mature female guppy, many spermatozoa were found in a synaptic knob-shaped micropocket (SSP) as the sperm storage (probably sperm entry) site on the follicle surface which was the expanded blind alley of a small tract extending from the ovarian cavity. Oocytes in the developmental stage of oil droplet formation already showed the attachment of the terminal end of the small tract opening into the ovarian cavity. The lateral wall of the tract attaching to the follicle surface consisted of epithelial cells fast jointed with tight junctions and desmosomes. The thick lateral wall of SSP was constructed with complex epithelial cell layers, and the terminal bottom was comprised of a single layer of epithelial cells on the surface of the follicular layer, which consisted of a very thin thecal cell layer, basement membrane, and granulosa cell layer. The vitellus was enclosed by the follicular layer and thin chorion, in which the micropyle was absent. In fully-grown oocytes, the germinal vesicle containing comparative short chromosomes did not always locate in the vicinity of the storage SSP of spermatozoa.  相似文献   

19.
Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.  相似文献   

20.
Abstract. The ultrastructural features of the ovary and oogenesis have been described in 6 species of patellid limpets from South Africa. The ovary is a complex organ that is divided radially into numerous compartments or lacunae by plate-like, blind-ended, hollow trabeculae that extend from the outer wall of the ovary to its central lumen. Trabeculae are composed of outer epithelial cells, intermittent smooth muscle bands, and extensive connective tissue. Oocytes arise within the walls of the trabeculae and progressively bulge outward into the ovarian lumen during growth while partially surrounded by squamous follicle cells. During early vitellogenesis, the follicle cells lift from the surface of the underlying oocytes and microvilli appear in the perivitelline space. Follicle cells restrict their contact with the oocytes to digitate foot processes that form desmosomes with the oolamina. When vitellogenesis is initiated, the trabecular epithelial cells hypertrophy and become proteosynthetically active. Yolk synthesis involves the direct incorporation of extraoocytic precursors from the lumen of the trabeculae (hemocoel) into yolk granules via receptor-mediated endocytosis. Lipid droplets arise de novo and Golgi complexes synthesize cortical granules that form a thin band beneath the oolamina. A fibrous jelly coat forms between the vitelline envelope and the overlying follicle cells in all species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号