首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These studies report the development of an efficient technique for large-scale cultivation of fast-growing hairy root culture systems for production of bioactive isoflavones. Trifolium pratense L. is an important source of pharmaceutically important isoflavones with immense health care applications. Trifolium pratense was transformed using different strains of Agrobacterium rhizogenes for hairy root induction and establishment of hairy root rhizoclones. Selected fast-growing rhizoclones of T. pratense were evaluated for their growth and isoflavone production. This study is the first report of stable production of isoflavones through successive culture passages from transformed hairy-root rhizoclones of T. pratense. One of the fast-growing hairy-root rhizoclones 2364A displayed significantly higher accumulation of all four pharmaceutically important isoflavones, 8.56 mg (gdw)?1 of daidzein, 2.45 mg (gdw)?1 of genistein, 15.23 mg (gdw)?1 of formononetin, and 1.10 mg (gdw)?1 of biochanin A, compared to other rhizoclones.  相似文献   

2.
Plant infection with Agrobacterium rhizogenes leads to the development of a hairy root disease notable for the rapid agravitropic growth of roots on hormone-free nutrient media. In order to look into the interaction of A. rhizogenes with plants and assess opportunities of practical application of hairy root culture, new approaches to their production are elaborated. A method of bacterium-free and plasmid-free production of genetically modified roots (hairy roots) by means of biolistic transformation of leaf explants with a DNA fragment (size of 5461 bp) consisting of genes rolA, rolB, rolC, and rolD are proposed. In most cases, such transformation resulted in the emergence of only adventitious roots with transient expression of rol-genes, and the growth of such roots on hormone-free media ceased in 2–3 months in contrast to genuine hairy roots capable of unrestricted growth. Molecular analysis of different systems of target genes’ expression showed an important role of transgene rolC and host gene of cyclin-dependent protein kinase CDKB1-1 in the maintenance of rapid growth of hairy roots in vitro (in isolated cultures).  相似文献   

3.
Transgenic hairy roots of Datura spp., established using strain A4 of Agrobacterium rhizogenes, are genetically stable and produce high levels of tropane alkaloids. To increase biomass and tropane alkaloid content of this plant tissue, four Pseudomonas strains, Pseudomonas fluorescens P64, P66, C7R12, and Pseudomonas putida PP01 were assayed as biotic elicitors on transgenic hairy roots of Datura stramonium, Datura tatula, and Datura innoxia. Alkaloids were extracted from dried biomass, and hyoscyamine and scopolamine were quantified using liquid chromatography-tandem mass spectrometry analysis. D. stramonium and D. innoxia biomass production was stimulated by all Pseudomonas spp. strains after a 5-d treatment. All strains of P. fluorescens increased hyoscyamine yields compared to untreated cultures after both 5 and 10 d of treatment. Hyoscyamine yields were highest in D. tatula cultures exposed to a 5-d treatment with C7R12 (16.633 + 0.456 mg g?1 dry weight, a 431% increase) although the highest yield increases compared to the control were observed in D. stramonium cultures exposed to strains P64 (511% increase) and C7R12 (583% increase) for 10 d. D. innoxia showed the highest scopolamine yields after elicitation with P. fluorescens strains P64 for 5 d (0.653 + 0.021 mg g?1 dry weight, a 265% increase) and P66 for 5 and 10 d (5 d, 0.754 + 0.0.031 mg g?1 dry weight, a 321% increase; 10 d 0.634 + 0.046 mg g?1 dry weight, a 277% increase). These results show that the Pseudomonas strains studied here can positively and significantly affect biomass and the yields of hyoscyamine and scopolamine from transgenic roots of the three Datura species.  相似文献   

4.
Withania somnifera, also known as Indian ginseng is known to contain valuable bioactive compounds, called withanolides that structurally resemble ginsenosides of Panax ginseng. These compounds provide the basis of pharmacological relevance in traditional systems of medicine. In the present study, 150 hairy root lines of W. somnifera were induced of which nine fast growing lines were analysed for their growth and withanolide content. Hairy root line W9 was selected due to its high specific growth rate (0.196 ± 0.005 d?1) and high withanolide content. The response to different concentrations of elicitors (methyl jasmonate and P. indica cell homogenate) and various exposure durations was assessed in the W9 hairy root line. The withanolide content as well as the pattern of gene expression from MVA, MEP and sterol pathway, was evaluated using qPCR. Though gene expression and withanolide content were found to be elevated in almost all MeJ and CHP treatments, the exposure of hairy roots to 15 μM MeJ for 4 h gave the maximum withanolide yield. The results suggest that the elicitation potential of methyl jasmonate was higher than that of P. indica cell homogenate for increasing withanolide levels in hairy roots of W. somnifera.  相似文献   

5.
To evaluate the ability of Arabidopsis thaliana hairy roots to produce heterologous proteins, hypocotyls were transformed with Rhizobium rhizogenes harbouring a green fluorescent protein gene (gfp) fused to a plant signal peptide sequence. Hairy root transgenic lines were generated from wild-type or mutant genotypes. A line secreted GFP at 130 mg/l of culture medium. Unlike as was previously found with turnip hairy roots, a His-tag was still attached to approximately 50?% of the protein. Control of the pH and addition of a protease inhibitor to the culture medium resulted in up to 87?% of the GFP retaining the His-tag. A. thaliana hairy roots expressing the human serpina1 (α-1-antitrypsin) gene secreted the protein, which was visible on a PAGE gel. Protein activity in the culture medium was demonstrated using an elastase inhibition assay. A. thaliana hairy roots can now be considered for the production of heterologous proteins, making it possible to mine the numerous genetic resources for enhancing protein production and quality.  相似文献   

6.
Origanum vulgare L is commonly known as a wild marjoram and winter sweet which has been used in the traditional medicine due to its therapeutic effects as stimulant, anticancer, antioxidant, antibacterial, anti-inflammatory and many other diseases. A reliable gene transfer system via Agrobacterium rhizogenes and plant regeneration via hairy roots was established in O. vulgare for the first time. The frequency of induced hairy roots was different by modification of the co-cultivation medium elements after infection by Agrobacterium rhizogenes strains K599 and ATCC15834. High transformation frequency (91.3 %) was achieved by co-cultivation of explants with A. rhizogenes on modified (MS) medium. The frequency of calli induction with an 81.5 % was achieved from hairy roots on MS medium with 0.25 mg/L?1 2,4-D. For shoot induction, initiated calli was transferred into a medium containing various concentrations of BA (0.1, 0.25, 0.5, 0.75 and 1 mg/L?1). The frequency of shoot generation (85.18 %) was achieved in medium fortified with 0.25 mg/L?1 of BA. Shoots were placed on MS medium with 0.25 mg/l IBA for root induction. Roots appeared and induction rate was achieved after 15 days.  相似文献   

7.
Amplified fragment length polymorphism (AFLP) fingerprinting and three different plastidic DNA regions (rpl16, rps16, atpF-atpH) were used to investigate species identity in the genus Wolffiella. For this purpose, clones (67 in total) belonging to all ten species were selected. Almost all the species were represented by more than one clone. The fingerprinting technique, AFLP, clearly distinguished the species, W. caudata, W. gladiata, W. neotropica, W. rotunda, and W. welwitschii. Apart from confirming the molecular identity of these five species, the plastidic markers could delineate two additional species, W. hyalina and W. denticulata, although the conclusion concerning the latter is restricted by the availability of only one clone. The efficiency of the plastid-derived markers in identifying the number of species-specific clusters followed the sequence rps16 > rpl16 > atpF-atpH. The species W. lingulata, W. oblonga, and W. repanda could not be identified by any of the molecular methods presented here, but could be strictly defined on a morphological basis. In several clones, high amounts of genetic admixtures between different species were detected. Further, simulation studies demonstrated that these clones are genetic hybrids. This might be one of the obstacles in molecular identification of species in the genus Wolffiella.  相似文献   

8.

Aims

This study investigated how genetic determination of adventitious root development compared in experimental hybrid and parental Salix and Populus clones, and how soil bulk density influenced root development.

Methods

Cuttings of 11 Salix clones and 10 Populus clones were grown in pots with water, a low bulk density soil and a high bulk density soil for 4 (water) or 10 weeks (soils). Parameters relating to root development were measured.

Results

Root initiation, total root length (RL), and dry mass (DM), as well as root: shoot relationships in Salix clones exceeded that of Populus clones in all media. For Salix clones RL and DM were highest in S. matsudana?×?pentandra and for Populus clones RL and DM were generally higher in hybrid clones having P. trichocarpa parentage. Mean RL and DM for all clones were generally greater in the low bulk density soil than in the high bulk density soil. There were a greater proportion of thinner roots in the low bulk density soil than in the high bulk density soil.

Conclusions

There were significant differences in root initiation, RL, and DM among clones within each genus. Increasing soil bulk density significantly reduced root development in both Salix and Populus clones. Evaluating cutting root development in pot trials could be a useful clone selection tool in willow and poplar breeding.
  相似文献   

9.
The results of the current study represent the first report on an efficient regeneration protocol for Hypericum tomentosum L. hairy root cultures. Six out of ten hairy root clones of H. tomentosum obtained by Agrobacterium rhizogenes-mediated transformation differentiated shoots on Murashige and Skoog medium containing a urea-based cytokinin thidiazuron in combination with the auxin inhibitor p-chlorophenoxyisobutyric acid. The whole plant regeneration of this species in vitro was achieved by further cultivation of shoots on medium containing benzyladenine. All transformed plants were successfully acclimated to ex vitro conditions. Most of the adapted clones exhibited typical hairy root phenotype with stunted growth, small wrinkly leaves and shortened internodes. Increased number of dark nodules, the sites of hypericins accumulation, was observed in the leaves of all transgenic clones. The capability of naphthodianthrone production was also modulated leading to a significant 28- and 5-fold increase of total hypericin content in two transgenic clones. The qPCR analysis revealed seven rolC integrations in two transgenic clones and one integration in four clones. The clones with multiple rolC copies synthesized the highest and the lowest amount of naphthodianthrones, respectively. The chromosome number in all analysed samples was determined as 2n?=?18 suggesting a revision of the cytogenetic characterization of H. tomentosum.  相似文献   

10.
Chlorophytum borivilianum belonging to the family Liliaceae, is distributed in the pantropical regions of India and South Africa. The sapogenins (stigmasterol and hecogenin) of C. borivilianum are well known for their appetizing and aphrodisiac properties. The present study involves enhancing the sapogenin content in C. borivilianum by genetic transformations with Agrobacterium rhizogenes strains (MTCC 2364 and 532, PRT Gus). A maximum transformation frequency of 98% was obtained with Agrobacterium rhizogenes MTCC 2364 strain with rhizome explants after a co-cultivation period of 48 h. Two potential rhizoclones (2364a and 2364b) were selected for the production of stigmasterol and hecogenin. The maximum production of stigmasterol (83.952?±?0.01 mg/g) was seen in 2364b rhizoclone, whereas, the highest accumulation of hecogenin (81.52?±?0.02 mg/g) was observed in 2364a rhizoclone. The C. borivilianum hairy root cultures obtained in this study provide a continuous and sustainable production of stigmasterol and hecogenin on a commercial scale.  相似文献   

11.
A spirostane with an attached trisaccharide, (25R)-5α-spirostane-2α,3β,5α-triol 3-O-(O-α-l-rhamnopyranosyl-(1 → 2)-O-(β-d-galactopyranosyl-(1 → 3))-β-d-glucopyranoside), was isolated and identified from the aerial parts of Agapanthus africanus by activity-guided fractionation. Fungicidal properties of the crude extract, semi-purified fractions as well as the purified active saponin from A. africanus were screened in vitro against Fusarium oxysporum. At a concentration of 1 mg mL?1, the crude extract and semi-purified ethyl acetate and dichloromethane fractions showed significant antifungal activity. The purified saponin inhibited the in vitro mycelial growth of F. oxysporum completely (100 %) at a concentration of 125 µg mL?1. Furthermore, to verify previously observed induced resistance by crude extracts of A. africanus towards leaf rust, intercellular PR-protein activity was determined in wheat seedlings following foliar application of the purified saponin at 100 µg mL?1. In vitro peroxidase enzyme activity increased significantly (60 %) in wheat seedlings 48 h after treatment with the purified saponin, demonstrating its role as an elicitor to activate a defence reaction in wheat.  相似文献   

12.
The medicinal plant Hyoscyamus reticulatus L. is a rich source of hyoscyamine and scopolamine, the tropane alkaloids. The use of hairy root cultures has focused significant attention on production of important metabolites such as stable tropane alkaloid production. Elicitation is an effective approach to induce secondary metabolite biosynthetic pathways. Hairy roots were derived from cotyledon explants inoculated with Agrobacterium rhizogenes and elicited by iron oxide nanoparticles (FeNPs) at different concentrations (0, 450, 900, 1800, and 3600 mg L?1) for different exposure times (24, 48, and 72 h). The highest hairy root fresh and dry weights were found in the medium supplemented with 900 mg L?1 FeNPs. Antioxidant enzyme activity was significantly increased in induced hairy roots compared to non-transgenic roots. The highest hyoscyamine and scopolamine production (about fivefold increase over the control) was achieved with 900 and 450 mg L?1 FeNPs at 24 and 48 h of exposure time, respectively. This is the first report of the effect of FeNP elicitor on hairy root cultures of a medicinal plant. We suggest that FeNPs could be an effective elicitor in hairy root cultures in order to increase tropane alkaloid production.  相似文献   

13.
Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121GUS-9:CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.  相似文献   

14.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

15.
Identification of the fungus Fusarium oxysporum f. sp. pisi (Fop), the causal organism of wilt disease of pea, is a time consuming and arduous task. Diagnosis of Fop by traditional means requires more than 2 months and involves two steps, identification of species using morphological characters and formae specialispisi’ using pathogenicity assays. The ambiguous morphological differences between F. solani and F. oxysporum further complicate the diagnosis of F. oxysporum. A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) based method was developed to detect Fop from India. A PCR–RFLP marker, HPACAPS1380, generated after restriction of 28S rDNA region with enzyme MvaI, detected accurately the Fop among several other fungi with detection sensitivity of 5 fg of Fop genomic DNA. In a mixture of Fop and pea DNA, the sensitivity was 500 pg of Fop DNA in 50 ng of pea DNA. The assay was further refined to detect the Fop from infected tissues and infested soil. The current assay can detect Fop from culture, plant tissues and soil in a considerably shorter period of time compared to traditional methods.  相似文献   

16.
Three hairy root clones of Hypericum perforatum (HR 2, HR 15 and HR 27) transformed with Agrobacterium rhizogenes A4M70GUS and their corresponding regenerated shoot culture clones (HRRS) were compared for differences in growth, production of phenolic compounds, antioxidant and antimicrobial activities. Transgenic clones were selected on the basis of morphological evaluation, genetic and molecular analyses. The clone HR 2 had the highest biomass accumulation, while HR 27 showed the highest shoot regeneration potential. The total phenolics and flavan-3-ols were enhanced in all tested transgenic cultures, while total flavonoids and hypericins were augmented in HRRS clones compared to non-transformed shoots. The HRRS clones produced substantial amounts of chlorogenic acid and 3-p-coumaroylquinic acid. Regarding the flavonoids, they produced significant contents of luteolin hexoside (HRRS 2), quercitrin and quercetin (HRRS 15) and isoquercetin (HRRS 27), while HR 2 and 15 accumulated 4-O-methylkaempferol-O-hexoside and quercetin 6-C-glucoside, respectively. The HR 15 was promising for the production of catechin and procyanidin derivatives and together with its HRRS clone exhibited a high potential for hyperforin and adhyperforin production. All identified naphtodianthrones were confirmed in HRRS 2 and 15 clones. Among xanthones, mangiferin was found as the major compound in HRRS, while trihydroxy-1-metoxy-C-prenyl xanthone was dominant in HR clones. Antimicrobial activity of transgenic cultures revealed that HRRS 15 strongly inhibited the growth of Bacillus cereus, Micrococcus flavus, Pseudomonas aeruginosa and Escherichia coli. Altogether, H. perforatum HR and HRRS cultures could be proposed as promising experimental systems for enhanced production of phenolic compounds with antioxidant and antibacterial properties.  相似文献   

17.
18.
19.

Key message

The genetic locus for leaf trichome was identified via marker-based mapping and SNP microarray assay, and a functional marker was developed to facilitate the breeding for hairiness in Brassica oleracea.

Abstract

Plant trichomes are involved in various functions particularly in protecting plants against some biotic and abiotic damages. In the present study, an F2 segregating population was developed from the cross between a glabrous cultivated B. oleracea (CC, 2n = 18) and a hairy wild relative, B. incana (CC, 2n = 18). A 1:3 segregation pattern between glabrous and hairy plants was detected among 1063 F2 genotypes, and the locus for hairiness was mapped in a 4.3-cM genetic region using 267 SSR markers among 149 F2 genotypes, corresponding to a 17.6-Mb genomic region on chromosome C01. To narrow the genetic region for hairiness, the Brassica 60 K SNP Bead Chip Arrays were applied to genotype 64 glabrous and 30 hairy F2 plants, resulting in a 1.04-Mb single peak region located in the 17.6-Mb interval. A candidate gene, BoTRY, was identified by qRT-PCR which revealed significant higher expression in glabrous F2 genotypes as compared with that in hairy plants. A cleaved amplified polymorphic site marker was successfully developed to distinguish the sequence variations of BoTRY between hairy and glabrous plants. Our study will be helpful for molecular breeding for hairiness in B. oleracea.
  相似文献   

20.
In studying plant colonization by inoculated Fusarium oxysporum endophytes, it is important to be able to distinguish inoculated isolates from saprophytic strains. In the current study, F. oxysporum isolates were transformed with the green (GFP) and red fluorescent protein (DsRed) genes, and benomyl- and chlorate-resistant mutant isolates were also developed. The benomyl- and chlorate-resistant mutants, and the fluorescently labelled transformants, were able to grow on potato dextrose agar amended with 20 mg Benlate® l?1, 30 g chlorate l?1 and 150 μg hygromycin ml?1, respectively. Single spores of all mutants remained stable after several transfers on non-selective media. Most mutants and transformants produced colony diameters that did not differ significantly from that of their wild-type progenitors after 7 days of growth on non-selective media. Few mutants, however, had growth rates that were either slower or faster than for their wild-types. Plant colonization studies showed that root and rhizome tissue colonization by most benomyl- and chlorate-resistant mutants was similar to that of their wild-type isolates. Unlike GFP transformants, DsRed transformants were difficult to visualize in planta. Both the mutants and transformants can be used for future studies to investigate colonization, distribution and survival of biocontrol F. oxysporum endophytes in banana plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号