首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetic properties of partially purified ribonucleotide reductase from Chinese hamster ovary cells have been investigated. Double reciprocal plots of velocity against substrate concentration were found to be linear for three the substrates tested, and yielded apparent Km values of 0.12 mM for CDP, 0.14 mM for ADP and 0.026 mM for GDP. Hydroxyurea, a potent inhibitor of ribonucleotide reduction, was tested against varying concentrations of ribonucleotide substrates and inhibited the enzyme activity in an uncompetitive fashion. Intercept replots were linear and exhibited Ki values for hydroxyurea of 0.08 mM for CDP reduction, 0.13 mM for ADP reduction and 0.07 mM for GDP reduction. Guanazole, another inhibitor of ribonucleotide reductase, interacted with the enzyme in a similar manner to hydroxyurea showing an uncompetitive pattern of inhibition with CDP reduction and yielding a Ki value of 0.57 mM. Partially purified ribonucleotide reductase from hydroxyurea-resistant cells was compared to enzyme activity from wild type cells. Significant differences were observed in the hydroxyurea Ki values with the three ribonucleotide substrates that were tested. Also, CDP reductase activity from the drug-resistant cells yielded a significantly higher Ki value for guanazole inhibition than the wild type activity. The properties of partially purified ribonucleotide reductase from a somatic cell hybrid constructed from wild type and hydroxyurea-resistant cells was also examined. The Ki value for hydroxyurea inhibition of CDP reductase was intermediate between the Ki values of the parental lines and indicated a codominant expression of hydroxyurea-resistance at the enzyme level. The most logical explanation for these results is that the mutant cells contain a structurally altered ribonucleotide reductase whose activity is less sensitive to inhibition by hydroxyurea or guanazole.  相似文献   

2.
Chlamydiae are obligate intracellular bacteria that are dependent on eukaryotic host cells for ribonucleoside triphosphates but not deoxyribonucleotide triphosphates. Ribonucleotide reductase is the only enzyme known to catalyze the direct conversion of a ribonucleotide to a deoxyribonucleotide. Hydroxyurea inhibits ribonucleotide reductase by inactivating the tyrosine free radical present in the small subunit of the enzyme. In this report, we show that Chlamydia trachomatis growth is inhibited by hydroxyurea in both wild-type mouse L cells and hydroxyurea-resistant mouse L cells. Hydroxyurea was used as a selective agent in culture to isolate, by a stepwise procedure, a series of C. trachomatis isolates with increasing levels of resistance to the cytotoxic effects of the drug. One of the drug-resistant C. trachomatis isolates (L2HR-10.0) was studied in more detail. L2HR-10.0 retained its drug resistance phenotype even after passage in the absence of hydroxyurea for 10 growth cycles. In addition, L2HR-10.0 was cross resistant to guanazole, another inhibitor of ribonucleotide reductase. Results obtained from hydroxyurea inhibition studies using various host cell-parasite combinations indicated that inhibition of host cell and C. trachomatis DNA synthesis by hydroxyurea can occur but need not occur simultaneously. Crude extract prepared from highly purified C. trachomatis reticulate bodies was capable of reducing CDP to dCDP. The CDP reductase activity was not inhibited by monoclonal antibodies to the large and small subunits of mammalian ribonucleotide reductase, suggesting that the activity is chlamydia specific. The CDP reductase activity was inhibited by hydroxyurea. Crude extract prepared from drug-resistant L2HR-10.0 reticulate bodies contained an elevation in ribonucleotide reductase activity. In total, our results indicate that C. trachomatis obtains the precursors for DNA synthesis as ribonucleotides with subsequent conversion to deoxyribonucleotides catalyzed by a chlamydia-specific ribonucleotide reductase.  相似文献   

3.
The reduction of ribonucleotides to deoxyribonucleotides, a rate-limiting step in DNA synthesis, is catalyzed by ribonucleotide reductase. This enzyme is composed of two components, M1 and M2. Recent work has shown that inhibition of ribonucleotide reductase by the antitumor drug hydroxyurea leads to a destabilized iron centre in protein M2. We have examined the relationship between the levels of ferritin, the iron storage protein, and the iron-containing M2 component of ribonucleotide reductase. These studies were carried out with hydroxyurea-sensitive, -resistant, and -revertant cell lines. Hydroxyurea-resistant mouse L cells contained M2 gene amplification and elevated levels of enzyme activity, M2 message, and total cellular M2 protein concentration. Hydroxyurea-revertant cells exhibited a wild-type M2 gene copy number, and approximately wild-type levels of enzyme activity, M2 message, and M2 protein concentration. In addition, we observed that the hydroxyurea-resistant cells possessed elevated levels of L-chain ferritin message and total cellular H-chain ferritin protein when compared to wild-type cells. In contrast, the revertant cell population contained approximately wild-type levels of ferritin mRNA and protein. In keeping with these observations, obtained with mouse L cells, was the finding that hydroxyurea-resistant Chinese hamster ovary cells with increased ribonucleotide reductase activity exhibited elevated expression of both ferritin and M2 genes, which declined in drug-sensitive revertant hamster cell lines with decreased levels of ribonucleotide reductase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
J Cai  R R Speed    H H Winkler 《Journal of bacteriology》1991,173(4):1471-1477
Rickettsia prowazekii, an obligate intracellular parasitic bacterium, was shown to have a ribonucleotide reductase that would allow the rickettsiae to obtain the deoxyribonucleotides needed for DNA synthesis from rickettsial ribonucleotides rather than from transport. In the presence of hydroxyurea, R. prowazekii failed to grow in mouse L929 cells or SC2 cells (a hydroxyurea-resistant cell line), which suggested that R. prowazekii contains a functional ribonucleotide reductase. This enzymatic activity was demonstrated by the conversion of ADP to dADP and CDP to dCDP, using (i) a crude extract of Renografin-purified R. prowazekii that had been harvested from infected yolk sacs and (ii) high-performance liquid chromatographic analysis. The rickettsial ribonucleotide reductase utilized ribonucleoside diphosphates as substrates, required magnesium and a reducing agent, and was inhibited by hydroxyurea. ADP reduction was stimulated by dGTP and inhibited by dATP. CDP reduction was stimulated by ATP and adenylylimido-diphosphate and inhibited by dATP and dGTP. These characteristics provided strong evidence that the rickettsial enzyme is a nonheme iron-containing enzyme similar to those found in mammalian cells and aerobic Escherichia coli.  相似文献   

5.
Ribonucleoside-diphosphate reductase (EC 1.17.4.1) was studied in mouse L cells selectively permeabilized to small molecules by treatment with dextran sulfate (R. Kucera and H. Paulus, 1982, Arch. Biochem. Biophys. 214, 102–113). The reduction of CDP was almost completely dependent on added ATP or adenyl-5′-yl imidodiphosphate, and that of GDP on dTTP. The pattern of inhibition by deoxyribonucleoside triphosphates was similar to that observed by others in cell-free preparations except for a somewhat higher sensitivity to inhibition. The substrate saturation curves for CDP and GDP were hyperbolic with apparent Km values of 0.05 and 0.24 mm, respectively. The maximum velocities for CDP and GDP reduction were close to the in vivo rate of DNA synthesis. Ribonucleotide reductase activity was not affected by the addition of ferric salts but was inhibited by the chelators bathophenanthroline sulfonate and thenoyltrifluoroacetone and also by hydroxyurea. EDTA caused a reversible stimulation of GDP reduction and an irreversible inhibition of CDP reduction; the latter could be partially reactivated by the addition of magnesium salts. Ribonucleotide reductase activity was inhibited by arsenite but only slightly stimulated by NADPH or dithiols; however, if the cells were first treated with 2,6-dichlorophenolindophenol, an almost complete dependence on NADPH was observed which could also be met by dithiothreitol or dihydrolipoic acid but not by reduced glutathione. This suggests that ribonucleotide reductase in dextran sulfate-treated L cells is relatively tightly coupled to an endogenous hydrogen donor system.  相似文献   

6.
Hydroxyurea-resistant S49 T-lymphoma cells have increased ribonucleotide reductase activity and deoxyribonucleoside triphosphate pools when compared with wild-type cultures. If ribonucleotide reductase inhibition is the mechanism by which deoxyadenosine is cytotoxic, then hydroxyurea (HU)-resistant S49 cells might be more resistant to deoxyadenosine toxicity when adenosine deaminase is inhibited than wild-type cells. Five S49 cell lines resistant to varying concentrations of HU were compared with wild-type cells by measuring CDP reductase activity, deoxyribonucleoside triphosphate pools, and deoxyadenosine toxicity. All five cell lines resistant to increasing concentrations of HU exhibited a twofold increase in resistance to deoxyadenosine toxicity when compared to wild type, and the resistance was proportional to the twofold increased pools of dNTPs in these cell lines but was less than the six- to eight fold increase in ribonucleotide reductase activity. In both wild-type and mutant cell lines, deoxyadenosine toxicity was accompanied by the accumulation of deoxyadenosine triphosphate and reduction of the other dNTPs; however, only dGTP greatly diminished. Exogenous addition of deoxycytidine decreased the dATP accumulation by about 20%, but also resulted in increases in the dCTP, dTTP, and dGTP pools. The S49 cells arrested in G1 phase when exposed to dAdo, although hydroxyurea-resistant cells required higher dAdo concentrations to elicit G1-phase arrest than wild-type cells. Deoxycytidine prevented dAdo-induced G1 arrest in all cell types. In summary, these data support the hypothesis that deoxyadenosine-induced dATP accumulation results in inhibition of ribonucleotide reductase and that this may be the mechanism for both cell cycle arrest and cytotoxicity in S49 T-lymphoma cells.  相似文献   

7.
We describe the isolation and characterization of a Chinese hamster ovary cell line selected for resistance to N-carbamoyloxyurea. Using the mammalian cell permeabilization assay developed in our laboratory, a detailed analysis of the target enzyme, ribonucleotide reductase (EC 1.17.4.1), was carried out. Both drug-resistant and parental wild-type cells required the same optimum conditions for enzyme activity. The Ki values for N-carbamoyloxyurea inhibition of CDP reduction were 2.0 mM for NCR-30A cells and 2.3 mM for wild-type cells, while the Ki value for ADP reduction was 2.3 mM for both cell lines. Although the Ki values remained essentially unchanged, the Vmax values for NCR-30A cells were 1.01 nmoles dCDP formed/5 × 106 cells/hour and 1.83 nmoles dADP/5 × 106 cells/hour, while those for the wild-type cells were 0.49 nmoles dCDP produced/5 × 106 cells/hour and 1.00 nmoles dADP/5 × 106 cells/hour. This approximate twofold increase in reductase activity at least partially accounts for a 2.6-fold increase in D10 value for cellular resistance to N-carbamoyloxyurea exhibited by NCR-30A cells. The NCR-30A cell line was also cross-resistant to the antitumor agents, hydroxyurea and guanazole. No differences in Ki values for inhibition of CDP and ADP reduction by these two drugs were detected and cellular resistance could be entirely accounted for by the elevation in activity of the reductase in the NCR-30A cell line. The properties of N-carbamoyloxyurea-resistance cells indicate they should be useful for further investigations into the regulation of mammalian enzyme activity.  相似文献   

8.
Metaphase chromosomes purified from a hydroxyurea-resistant Chinese hamster cell line were able to transform recipient wild-type cells to hydroxyurea resistance at a frequency of 10(-6). Approximately 60% of the resulting transformant clones gradually lost hydroxyurea resistance when cultivated for prolonged periods in the absence of drug. One transformant was subjected to serial selection in higher concentrations of hydroxyurea. The five cell lines generated exhibited increasing relative plating efficiency in the presence of the drug and a corresponding elevation in their cellular content of ribonucleotide reductase. The most resistant cell line had a 163-fold increase in relative plating efficiency and a 120-fold increase in enzyme activity when compared with the wild-type cell line. The highly hydroxyurea-resistant cell lines had strong electron paramagnetic resonance signals characteristic of an elevated level of the free radical present in the M2 subunit of ribonucleotide reductase. Two-dimensional electrophoresis of cell-free extracts from one of the resistant cell lines indicated that a 53,000-dalton protein was present in greatly elevated quantities when compared with the wild-type cell line. These data suggest that the hydroxyurea-resistant cell lines may contain an amplification of the gene for the M2 subunit of ribonucleotide reductase.  相似文献   

9.
We investigated the cell cycle regulation of deoxyribonucleoside triphosphate (dNTP) metabolism in hydroxyurea-resistant (HYUR) murine S49 T-lymphoma cell lines. Cell lines 10- to 40-fold more hydroxyurea-resistant were selected in a stepwise manner. These HYUR cells exhibited increased CDP reductase activity (5- to 8-fold) and increased dNTP pools (up to 5-fold) that appeared to result from increased activity of the M2 subunit (binding site of hydroxyurea) of ribonucleotide reductase. These characteristics remained stable when the cells were grown in the absence of hydroxyurea for up to 2 years. In both wild type and hydroxyurea-resistant cell populations synchronized by elutriation, dCTP and dTTP pools increased in S phase, whereas dATP and dGTP pools generally remained the same or decreased, suggesting that allosteric effector mechanisms were operating to regulate pool sizes. Additionally, CDP reductase activity measured in permeabilized cells increased in S phase in both wild type and hydroxyurea-resistant cells, suggesting a nonallosteric mechanism of increased ribonucleotide reductase activity during periods of active DNA synthesis. While wild type S49 cells could be arrested in the G1 phase of the cell cycle by dibutyryl cyclic AMP, hydroxyurea-resistant cell lines could not be arrested in the G1 phase by exogenous cyclic AMP or agents that elevate the concentration of endogenous cyclic AMP. These data suggest that cyclic AMP-generated G1 arrest in S49 cells might be mediated by the M2 subunit of ribonucleotide reductase.  相似文献   

10.
Two components of mammalian ribonucleotide reductase have been separated by blue dextran-Sepharose chromatography from a hydroxyurea-resistant cell line, NCR-30A2, and its parental wild type. Analysis of reductase activity in these cells and the enzyme components reveals that there are three alterations involving ribonucleotide reductase activity in NCR-30A2 cells. There is an elevation in the effector-binding (EB) component, an elevation in the non-heme-iron-containing (NHI) component, and an alteration in the NHI component that renders the enzyme less sensitive to inhibition by hydroxyurea. These findings easily account for the resistance of NCR-30A2 cells to the antitumor agent hydroxyurea, and to other drugs with a similar mode of action.  相似文献   

11.
Hydroxyurea-resistant Aedes albopictus mosquito cells were selected by incremental exposure of unmutagenized cells to hydroxyurea concentrations ranging from 0.1 to 8 mM. Clonal populations that had become 40-fold more resistant to hydroxyurea than wild-type cells varied in morphology, and their growth rate decreased to a ∼45 h doubling time, relative to an 18 h doubling time in unselected cells. At this level of resistance, the cells remained diploid, with a modal chromosome number of 6. When labelled with 35S[methionine/cysteine], clone HU1062, which grew in the presence of 8 mM hydroxyurea, overproduced a labeled protein with the approximate size of the 45,000 dalton M2 subunit of ribonucleotide reductase. Consistent with this observation, ribonucleotide reductase activity in HU-1062 cells was approximately 10-fold higher than in wild-type control cells. This is the first example of an hydroxyurea-resistant insect cell line. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Assay of ribonucleotide reduction in nucleotide-permeable hamster cells   总被引:9,自引:0,他引:9  
Ribonucleotide reduction was measured in Chinese hamster ovary cells made permeable to nucleotides by treatment with the detergent Tween-80. When compared to the respective ribonucleotide reductase activity in partially purified cell extracts, CDP and GDP reductase activities in permeabilized cells responded in a similar fashion to dithiothreitol, pH, MgCl2, FeCl3, substrate concentration and the presence of positive or negative allosteric effectors. At low protein concentrations both CDP and GDP reduction with whole cells increased linearly with cell number and was greater than the activity in corresponding cell extracts. Permeabilized cells were used to measure the level of CDP and GDP reductase in a hamster cell line resistant to the cytotoxic effects of hydroxyurea. The hydroxyurea-resistant cell line contained four to ten times more CDP and GDP reductase activity compared to parental or revertant cell lines. The permeabilized cell assay was also used to measure CDP and GDP reductase activities in Chinese hamster ovary cells synchronized by isoleucine starvation. CDP reductase activity was low in G1 arrested cells but increased 10-fold by 16 hours after the readdition of isoleucine to the growth medium. GDP reductase, which is present at much higher levels, is similarly induced after isoleucine addition, but only by 2-fold. The maximum activity of both CDP and GDP reductase occurred from 14 to 16 hours after isoleucine addition, which corresponded to the period of maximum DNA synthesis.  相似文献   

13.
The mammalian ribonucleotide reductase consists of two nonidentical subunits, protein M1 and M2. M1 binds nucleoside triphosphate allosteric effectors, whereas M2 contains a tyrosine free radical essential for activity. The activity of ribonucleotide reductase increased 10-fold in extracts of mouse L cells 6 h after infection with pseudorabies virus. The new activity was not influenced by antibodies against subunit M1 of calf thymus ribonucleotide reductase, whereas the reductase activity in uninfected cells was completely neutralized. Furthermore, packed infected cells (but not mock-infected cells) showed an electron paramagnetic resonance spectrum of the tyrosine free radical of subunit M2 of the cellular ribonucleotide reductase. These data given conclusive evidence that on infection, herpesvirus induces a new or modified ribonucleotide reductase. The virus-induced enzyme showed the same sensitivity to inhibition by hydroxyurea as the cellular reductase. The allosteric regulation of the virus enzyme was completely different from the regulation of the cellular reductase. Thus, CDP reduction catalyzed by the virus enzyme showed no requirement for ATP as a positive effector, and no feedback inhibition was observed by dTTP or dATP. The virus reductase did not even bind to a dATP-Sepharose column which bound the cellular enzyme with high affinity.  相似文献   

14.
In all organisms the deoxyribonucleotide precursors required for DNA synthesis are synthesized from ribonucleotides, a reaction catalyzed by ribonucleotide reductase. In a previous study we showed that Chlamydia trachomatis growth was inhibited by hydroxyurea, an inhibitor of ribonucleotide reductase, and a mutant resistant to the cytotoxic effects of the drug was isolated. Here we report the cloning, expression, and purification of the R1 and R2 subunits of the C. trachomatis ribonucleotide reductase. In comparison with other ribonucleotide reductases, the primary sequence of protein R1 has an extended amino terminus, and the R2 protein has a phenylalanine where the essential tyrosine is normally located. Despite its unusual primary structure, the recombinant enzyme catalyzes the reduction of CDP to dCDP. Results from deletion mutagenesis experiments indicate that while the extended amino terminus of the R1 protein is not required for enzyme activity, it is needed for allosteric inhibition mediated by dATP. Results with site-directed mutants of protein R2 suggest that the essential tyrosine is situated two amino acids downstream of its normal location. Finally, Western blot analysis show that the hydroxyurea-resistant mutant C. trachomatis isolate overexpresses both subunits of ribonucleotide reductase. At the genetic level, compared with wild type C. trachomatis, the resistant isolate has a single base mutation just upstream of the ATG start codon of the R2 protein. The possibility that this mutation affects translational efficiency is discussed.  相似文献   

15.
Infection of Escherichia coli with phage T4 induces a large increase in ribonucleotide reductase activity. We show that hydroxyurea inhibits T4-induced CDP, ADP, UDP, and GDP reductase activities in vitro. Moreover, there are significant differences in the degree of inhibition of each ribonucleotide reductase activity. The reductase activities for CDP and ADP are more sensitive to hydroxyurea than those for UDP and GDP, particularly at high hydroxyurea molarities. As little as 5 x 10(-4)M hydroxyurea lowers CDP and ADP reductase activities to 25 to 30% whereas as much as 0.5 M hydroxyurea is needed to lower UDP and GDP reductase activities to 50%.  相似文献   

16.
Phosphonoformic acid (PFA) and its congener phosphonoacetic acid (PAA) are inhibitors of viral replication whose mechanism of action appears to be the inhibition of viral DNA polymerase. These drugs inhibit mammalian DNA polymerase to a lesser extent. We sought to characterize the effects of phonoformic acid on mammalian cells by examining mutants of S49 cells (a mouse T-lymphoma line), which were selected by virtue of their resistance to phosphonoformic acid. The 11 mutant lines that were resistant to growth inhibition by 3 mM PFA had a range of growth rates, cell cycle distribution abnormalities, and resistance to the inhibitory effects of thymidine, acycloguanosine (acyclovir), aphidicolin, deoxyadenosine, and novobiocin. Most mutant lines had pools of ribonucleoside triphosphates and deoxyribonucleoside triphosphates similar to those of wild-type S49 cells. However, one line (PFA 3-9) had a greatly elevated dCTP pool. When this mutant line was further characterized, no apparent defect in DNA polymerase alpha activity was seen, but an increased ribonucleotide reductase activity, as assayed by CDP reduction in permeabilized cells, was observed. The CDP reductase activity in the PFA 3-9 cells decreased to wild-type control levels, and the CDP reductase activity of wild-type cells was also greatly reduced when PFA (2-3 mM) was added to permeabilized cells during the enzyme assay. These results demonstrate that PFA can directly inhibit ribonucleotide reductase activity in permeabilized cells. In addition, when PFA was added to exponentially growing cultures of either wild-type or PFA 3-9 mutant cells, the drug caused an arrest in S phase of the cell cycle and a decrease in all four deoxyribonucleotide pools, with the most dramatic decrease in the dCTP pools. The reduction in the dCTP pool level could be reversed by addition of exogenous deoxycytidine, but this reversed PFA toxicity only marginally. These observations suggest that PFA is an inhibitor of mammalian ribonucleotide reductase and that partial resistance to PFA can be effected by mutation to increased CDP reductase activity resulting in a large dCTP pool. This mutation results in less than twofold resistance to PFA, suggesting that other sites of inhibition coexist.  相似文献   

17.
HS3, a highly phosphorylated dinucleoside originally purified from the fungus Achlya, has been isolated from Chinese hamster ovary cells undergoing glutamine starvation. The HS3 compounds obtained from the fungal and mammalian sources exhibited similar physical and chemical properties. This unusual dinucleotide may be an important regulator of eucaryotic ribonucleoside diphosphate reductase activity; for 50 micrometer HS3, isolated from either mammalian or fungal cells, significantly inhibited CDP reduction in Achlya or hamster cell preparations, but only marginally affected the activity of the enzyme from E. coli. Studies with HS3 isolated from Achlya and partially purified mammalian ribonucleotide reductase indicated that the compound noncompetitively inhibited the reduction of varying concentrations of the substrates CDP, ADP and GDP with Ki values of 23 micrometer, 14 micron and 16 micron respectively. These inhibitor concentrations are well below the estimated intracellular levels of HS3 in glutamine starved cells and suggest that HS3 inhibition of ribonucleotide reduction may be responsible for the rapid inhibition of DNA synthesis seen under these culture conditions.  相似文献   

18.
Phage T4-induced ribonucleotide reductase, purified to homogeneity, catalyzes the reduction of the four ribonucleotides CDP, UDP, ADP, and GDP to the corresponding deoxyribonucleotides. The enzyme is an order of magnitude more sensitive to hydroxyurea than the corresponding Escherichia coli enzyme. Fifty per cent inhibition occurs at 10 micrometer hydroxyurea. Inhibition is complete at a high concentration of the drug, and there is no differential effect on the four substrates. Treatment of T4 ribonucleotide reductase or its isolated subunits with hydroxyurea does not lead to their irreversible inactivation.  相似文献   

19.
Hydroxyurea-resistant Aedes albopictus mosquito cells were selected by incremental exposure of unmutagenized cells to hydroxyurea concentrations ranging from 0.1 to 8 mM. Clonal populations that had become 40-fold more resistant to hydroxyurea than wild-type cells varied in morphology, and their growth rate decreased to a;45 h doubling time, relative to an 18 h doubling time in unselected cells. At this level of resistance, the cells remained diploid, with a modal chromosome number of 6. When labelled with (35)S[methionine/cysteine], clone HU1062, which grew in the presence of 8 mM hydroxyurea, overproduced a labeled protein with the approximate size of the 45,000 dalton M2 subunit of ribonucleotide reductase. Consistent with this observation, ribonucleotide reductase activity in HU-1062 cells was approximately 10-fold higher than in wild-type control cells. This is the first example of an hydroxyurea-resistant insect cell line. [Originally published in Volume 34, Archives of Insect Biochemistry and Physiology, 34:31-41 (1997).] Copyright 1997 Wiley-Liss, Inc.  相似文献   

20.
Repeated passages of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1,000-fold. Analyses of viral protein synthesis by using [35S]methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase (EC 1.17.4.1) activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification which yielded greater than 90% of the induced ribonucleotide reductase activity in the fraction obtained by 35% saturation with ammonium sulfate resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated [3H]thymidine into DNA earlier and at a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. In the absence of the drug, the attainment of a maximum viral DNA synthesis rate was accelerated after infection by drug-resistant isolates. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolates readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is a 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号