首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The influence of six fungitoxicants on growth and aflatoxin production by Aspergillus flavus was tested in liquid SMKY medium at two concentrations, viz . 0.1 and 0.5%. Thiram completely inhibited the aflatoxin production at 0.5% concentration. Other fungitoxicants showing more than 60% inhibition were bavistin and daconil. Vitavax (0.1%) and agrosan GN (0.1 and 0.5%) stimulated the growth of fungus and aflatoxin elaboration after 7 d of incubation. Dithane M-45 moderately inhibited aflatoxin synthesis. Treatment with fungitoxicants also alters the ratio of B1 and G1.  相似文献   

2.
The co-inhabiting mycoflora with Aspergillus flavus observed on individual maize kernels was evaluated for its influence on aflatoxin synthesis. All 13 types of associations of different fungal species inhibited aflatoxin B1 and G1 production at different levels (34·3–100%). Inhibition of radial growth of A. flavus by Fusarium moniliforme (59·8%), Trichoderma viride (72·5%) and Rhizopus nigricans (42%) could be directly correlated to the per cent inhibition of aflatoxin production. High levels of inhibition of aflatoxin elaboration were noted in competition of A. flavus with other toxigenic moulds.  相似文献   

3.
Aflatoxin B1 production by Aspergillus flavus was studied in yeast extract sucrose broth in the presence of cinnamon, clove, almond and cardamom oils. Growth and aflatoxin B1 production was inhibited by 0.5 μl cinnamon oil ml-1 medium and by 1 μl clove oil ml-1. Almond and cardamom oils only affected growth when their concentration exceeded 1.25 μl ml-1 medium. Aflatoxin B1 production was stimulated by 0.75 and 1 μl almond oil ml-1 medium or by 0.25 and 0.5 μl cardamom oil ml-1.  相似文献   

4.
The effect of three systemic fungicides, tridemorph, fenpropimorph and fenarimol, on growth and aflatoxin production by Aspergillus parasiticus was studied in a chemically defined medium. Each compound inhibited growth and at the same time gave increased information of aflatoxin. Fenarimol, which is considered to be an inhibitor of cytochrome P450, not only affects total aflatoxin production but may also alter the ratio of aflatoxin B1 to G1 in the culture filtrate.  相似文献   

5.
The efficacies of four different concentrations (3, 5, 8 and 10 mg/ml) of an aqueous extract of the Andrographis peniculata were tested on growth and aflatoxin production by Aspergillus flavus in liquid SMKY medium. The maximum inhibition of aflatoxin production and growth of A. flavus were marked at 10 mg/ml (i.e. 78.6% aft. B1 and 75.1% growth). Growth and aflatoxin production were co-related processes.  相似文献   

6.
Fertilization of bean plants grown in perlite with 1 and 3 mM CaCl2 or Ca(NO3)2 reduced severity of grey mould as compared with control plants or plants fertilized with 5 mM of the compounds. Fertilization with Ca(NO3)2 reduced severity leaf grey mould and fruit ghost spots of tomato plants grown in perlite by 70 and 45%, respectively. The rate of decrease varied with the position of the fruits on the plants. Leaves from plants treated with calcium or otherwise [KNO3, (NH4)2SO4] produced less ethylene than leaves of nontreated plants. Rate of growth of B. cinerea was lower on growth medium prepared from washings from leaves of calcium fertilized plants than from leaves from other treatments. The fertilizer combination Ca(H2PO4)2+ CaSO4 (1 and 3 g/kg soil) applied once to tomato plants grown in soil reduced severity of leaf grey mould by 80 % (significant at P = 0.05) but 1–3 g CaSO4/kg soil only tended to reduce disease severity (30–40 %, not significant) as compared with the control. The compounds CaCl2 and Ca(NO3)2 increased significantly ( P = 0.05) the growth of B. cinerea on synthetic medium when applied at rates of 1 0–10.0 mM whereas reduction of growth was observed with 0.1 mM of the compounds and of CaSO4.  相似文献   

7.
Role of ethylene in de novo shoot morphogenesis from explants and plant growth of mustard ( Brassica juncea cv. India Mustard) in vitro was investigated, by culturing explants or plants in the presence of the ethylene inhibitors aminoethoxyvinylglycine (AVG) and AgNO3. The presence of 20 μ M AgNO3 or 5 μ M AVG in culture medium containing 5 μ M naphthaleneacetic acid and 10 μ M benzyladenine were equally effective in promoting shoot regeneration from leaf disc and petiole explants. However, AgNO3 greatly enhanced ethylene production which reached a maximum after 14 days, whereas ethylene levels in the presence of AVG remained low during 3 weeks of culture. The promotive effect of AVG on shoot regeneration was overcome by exogenous application of 25 μ M 2-chloroethylphosphonic acid (CEPA), but AgNO3-induced regeneration was less affected by CEPA. For whole plant culture, AVG did not affect plant growth, although it decreased ethylene production by 80% and both endogenous levels of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC by 70–80%. In contrast, AgNO3 stimulated all 3 parameters of ethylene synthesis. Both AgNO3 and CEPA were inhibitory to plant growth, with more severe inhibition occuring in AgNO3. Leaf discs derived from plants grown with AVG or AgNO3 were highly regenerative on shoot regeneration medium without ethylene inhibitor, but the presence of AgNO3 in the medium was inhibitory to regeneration of those derived from plants grown with AgNO3.  相似文献   

8.
Aims:  To assess the ability of five probiotic bacteria to bind aflatoxin B1 and to determine the key role of teichoic acids in the binding mechanism.
Methods and Results:  The strains were incubated in aqueous solutions containing aflatoxin B1 (AFB1). The amount of free toxin was quantified by HPLC. Stability of the bacteria–aflatoxin complex was evaluated by repeated washes with buffer. In order to understand the binding process, protoplasts, spheroplasts and cell wall components of two strains were analysed to assess their capacity to bind AFB1. Additionally, the role of teichoic acids in the AFB1 binding process was assessed. Lactobacillus reuteri strain NRRL14171 and Lactobacillus casei strain Shirota were the most efficient strains for binding AFB1. The stability of the AFB1–bacteria complex appears to be related to the binding ability of a particular strain; AFB1 binding was also pH-dependent. Our results suggest that teichoic acids could be responsible for this ability.
Conclusions:  Our results provide information concerning AFB1 binding by previously untested strains, leading to enhanced understanding of the mechanism by which probiotic bacteria bind AFB1.
Significance and Impact of the Study:  Our results support the suggestion that some probiotic bacteria could prevent absorption of aflatoxin from the gastrointestinal tract.  相似文献   

9.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

10.
The essential oil of German chamomile showed specific inhibition toward aflatoxin G1 (AFG1) production, and ( E )- and ( Z )-spiroethers were isolated as the active compounds from the oil. The ( E )- and ( Z )-spiroethers inhibited AFG1 production of Aspergillus parasiticus with inhibitory concentration 50% (IC50) values of 2.8 and 20.8 μM, respectively, without inhibiting fungal growth. Results of an O- methylsterigmatocystin (OMST) conversion study indicated that the spiroethers specifically inhibited the OMST to AFG1 pathway. A cytochrome P450 monooxygenase, CYPA, is known as an essential enzyme for this pathway. Because CYPA has homology with TRI4, a key enzyme catalyzing early steps in the biosynthesis of trichothecenes, the inhibitory actions of the two spiroethers against TRI4 reactions and 3-acetyldeoxynivalenol (3-ADON) production were tested. ( E ) - and ( Z ) - spiroethers inhibited the enzymatic activity of TRI4 dose-dependently and interfered with 3-ADON production by Fusarium graminearum , with IC50 values of 27.1 and 103 μM, respectively. Our results suggest that the spiroethers inhibited AFG1 and 3-ADON production by inhibiting CYPA and TRI4, respectively.  相似文献   

11.
The long-term response of Arabidopsis thaliana to increasing CO2 was evaluated in plants grown in 800 μl l−1 CO2 from sowing and maintained, in hydroponics, on three nitrogen supplies: "low,""medium" and "high." The global response to high CO2 and N-supply was evaluated by measuring growth parameters in parallel with photosynthetic activity, leaf carbohydrates, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) messenger RNA and protein, stomatal conductance (gs) and density. CO2 enrichment was found to stimulate biomass production, whatever the N-supply. This stimulation was transient on low N-supply and persisted throughout the whole vegetative growth only in high N-supply. Acclimation on low N–high CO2 was not associated with carbohydrate accumulation or with a strong reduction in Rubisco amount or activity. At high N-supply, growth stimulation by high CO2 was mainly because of the acceleration of leaf production and expansion while other parameters such as specific leaf area, root/shoot ratio and gs appeared to be correlated with total leaf area. Our results thus suggest that, in strictly controlled and stable growing conditions, acclimation of A. thaliana to long-term CO2 enrichment is mostly controlled by growth rate adjustment.  相似文献   

12.
Elevated levels of ethylene occur in controlled environment agriculture and in spaceflight environments, leading to adverse plant growth and sterility. The objectives of this research were to characterize the influence of ethylene on carbon dioxide (CO2) assimilation (CA), dark period respiration (DPR) and growth of lettuce ( Lactuca sativa L. cv. Buttercrunch) under ambient and low total pressure conditions. Lettuce plants were grown under variable total gas pressures of 25 kPa (hypobaric) and 101 kPa (ambient) pressure. Endogenously produced ethylene accumulated and reduced CA, DPR and plant growth of ambient and hypobaric plants. There was a negative linear correlation between increasing ethylene concentrations [from 0 to around 1000 nmol mol−1 (ppb)] on CA, DPR and growth of ambient and hypobaric plants. Declines in CA and DPR occurred with both exogenous and endogenous ethylene treatments. CA was more sensitive to increasing ethylene concentration than DPR. There was a direct, negative effect of increasing ethylene concentration reducing gas exchange as well as an indirect ethylene effect on leaf epinasty, which reduced light capture and CA. While the CA was comparable, there was a lower DPR in hypobaric than ambient pressure plants – independent of ethylene and under non-limiting CO2 levels (100 Pa pCO2, nearly three-fold that in normal air). This research shows that lettuce can be grown under hypobaria (≅25% of normal earth ambient total pressure); however, hypobaria caused no significant reduction of endogenous ethylene production.  相似文献   

13.
In order to investigate effects of limited NO3 availability in corn ( Zea mays L. cv. Brulouis) 17-day-old plants were grown for a further 25 days on sand in a growth chamber. The plants received frequent irrigation with a complete nutrient solution containing 0.2, 0.6, 1.5 or 3.0 mM NO3. With 0.2 mM NO; nitrate levels in both roots and leaves diminished rapidly and were almost zero after 10 days treatment. Concurrently, as signs of nitrogen deficiency appeared, shoot growth was restricted, whereas root growth was enhanced. In addition, the concentration of reduced nitrogen and malate in the leaves declined, and in vitro nitrate reductase activity (NRA. EC 1.6.6.1), soluble protein and chlorophyll levels of leaf tissue were depressed and starch concentration was enhanced. With 0.6 mM NO3 in the nutrient solution, the decrease in NO3 levels in the tissues and the increase in root development were similar to those observed with 0.2 mM NO3. However, shoot growth, reduced nitrogen concentration in leaves, and the above-mentioned biochemical characteristics were almost identical to those obtained at 1.5 and 3.0 mM NO3. This indicates that when supplied with 0.6 mM NO3, corn plants were able to absorb sufficient NO3 to support maximal biomass production without appreciable NO3 accumulation in roots or shoot. It is, thus, suggested that the plants responded to low NO3, availability in medium by enhancing root growth and by maximizing NO3 reduction relative to NO3 accumulation.  相似文献   

14.
Abstract. The objective of this study was to investigate the effects of water stress in sweet potato ( Ipomoea batatas L. [Lam] 'Georgia Jet') on biomass production and plant-water relationships in an enriched CO2 atmosphere. Plants were grown in pots containing sandy loam soil (Typic Paleudult) at two concentrations of elevated CO2 and two water regimes in open-top field chambers. During the first 12 d of water stress, leaf xylem potentials were higher in plants grown in a CO2 concentration of 438 and 666 μmol mol−1 than in plants grown at 364 μmol mol−1. The 364 μmol mol−1 CO2 grown plants had to be rewatered 2 d earlier than the high CO2-grown plants in response to water stress. For plants grown under water stress, the yield of storage roots and root: shoot ratio were greater at high CO2 than at 364 μmol mol−1; the increase, however, was not linear with increasing CO2 concentrations. In well-watered plants, biomass production and storage root yield increased at elevated CO2, and these were greater as compared to water-stressed plants grown at the same CO2 concentration.  相似文献   

15.
The effect of different concentrations of clove and cinnamon oils was studied on the growth of and aflatoxin production by Aspergillus flavus in SMKY liquid medium. The effect of these compounds was also verified against aflatoxin production in maize. Significant reduction (P < 0.05) in the elaboration of aflatoxin in liquid culture after treatment with more than 100 μg ml-1 of these compounds was recorded. Cinnamon oil exhibited maximum inhibitory action and reduced 78% aflatoxin formation on maize at 1000 mg kg-1.  相似文献   

16.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

17.
The impact of ozone on the immunity-impairing activity of aflatoxin B1 (AFB1) was studied. Phagocytosis by rat peritoneal macrophages, which was found to be suppressed in the presence of AFB1, remained unimpaired when the applied AFB1 was pretreated with ozone (1.2 mg 1-1) for 6 min at a flow rate of 40 ml min-1. Hence, application of ozone on AFB1-contaminated foodcrops seems to be a promising preventive measure against any adverse immunological disorder in consumers.  相似文献   

18.
The highly active, polar gibberellin-like substance found in the apical region of shoots of tall (genotype Le ) peas ( Pisum sativum L.) is shown by combined gas chromatography-mass spectrometry (GC/MS) to be GA1. This substance is either absent or present at only low levels in dwarf ( le ) plants. Multiple ion monitoring (MIM) tentatively suggests that GA8 may also be present in shoot tissue of tall peas. Gibberellin A1 is the first 3 β-hydroxylated gibberellin positively identified in peas, and its presence in shoot tissue demonstrates the organ specificity of gibberellin production since GA1 has not been detected in developing seeds. Application of GA1 can mask the Le/le gene difference. However, whilst Le plants respond equally to GA20 and GA1, le plants respond only weakly to GA20, the major biologically active gibberellin found in dwarf peas. These results suggest that the Le gene controls the production of a 3 β-hydroxylase capable of converting GA20 to GA1. Further support for this view comes from feeds of [3H] GA20 to Le and le plants. Plants with Le metabolise [3H] GA20 to three major products whilst le plants produce only one major product after the same time. The metabolite common to Le and le plants co-chromatographs with GA29. The additional two metabolites in Le peas co-chromatograph with GA1 and GA8.  相似文献   

19.
The influence of P on N2 fixation and dry matter production of young pea ( Pisum sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth response could be observed. The P concentration in nodules responded only slightly to P addition. A supply of P to P-deficient plants increased both the nodule dry weight, specific C2H2 reduction and P concentration in shoots relatively faster than it increased shoot dry weight and P concentration in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. This indicates that the smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants seem to be caused by impaired shoot metabolism and not by a direct effect of P deficiency of the nodules.  相似文献   

20.
The objective of this investigation was to examine the effect of an elevated atmospheric CO2 partial pressure ( p CO2) on the N-sink strength and performance of symbiotic N2 fixation in Trifolium repens L. cv. Milkanova. After initial growth under ambient p CO2 in a nitrogen-free nutrient solution, T. repens in the exponential growth stage was exposed to ambient and elevated p CO2 (35 and 60 Pa) and two levels of mineral N (N-free and 7·5 mol m–3 N) for 36 d in single pots filled with silica sand in growth chambers. Elevated p CO2 evoked a significant increase in biomass production from day 12 after the start of CO2 enrichment. For plants supplied with 7·5 mol m–3 N, the relative contribution of symbiotically fixed N (%Nsym) as opposed to N assimilated from mineral sources (15N-isotope-dilution method), dropped to 40%. However, in the presence of this high level of mineral N, %Nsym was unaffected by atmospheric p CO2 over the entire experimental period. In plants fully dependent on N2 fixation, the increase in N yield reflects a stimulation of symbiotic N2 fixation that was the result of the formation of more nodules rather than of higher specific N2 fixation. These results are discussed with regard to physiological processes governing symbiotic N2 fixation and to the response of symbiotic N2 fixation to elevated p CO2 in field-grown T. repens .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号