首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine(WCFM_SVM). Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues,using the substitution parameters of Young's modulus and Poisson's ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima,the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt(LM) algorithm was presented,which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested.The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.  相似文献   

2.
This paper is focused on the model identification of a Micro Air Vehicle (MAV) in straight steady flight condition. The identification is based on input-output data collected from flight tests using both frequency and time dorrtain techniques. The vehicle is an in-house 40 cm wingspan airplane. Because of the complex coupled, multivariable and nonlinear dynamics of the aircraft, linear SISO structures for both the lateral and longitudinal models around a reference state were derived. The aim of the identification is to provide models that can be used in future development of control techniques for the MAV.  相似文献   

3.
Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is laborintensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface(GUI) tool named Bio Cluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering(HC) and the Improved Hierarchical Clustering(IHC), a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1–47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that Bio Cluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/.  相似文献   

4.
We present a computerized method for the semi-automatic detection of contours in ultrasound images.The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models.This new function is a combination of the gray-level information and first-order statistical features,called standard deviation parameters.In a comprehensive study,the developed algorithm and the efficiency of segmentation were first tested for synthetic images.Tests were also performed on breast and liver ultrasound images.The proposed method was compared with the watershed approach to show its efficiency.The performance of the segmentation was estimated using the area error rate.Using the standard deviation textural feature and a 5×5 kernel,our curve evolution was able to produce results close to the minimal area error rate(namely 8.88% for breast images and 10.82% for liver images).The image resolution was evaluated using the contrast-to-gradient method.The experiments showed promising segmentation results.  相似文献   

5.
As one of the important vegetation parameters, vegetation fractional coverage (VFC) is more difficult to measure accurately among a good many parameters of plant communities. The temperate typical steppe in the north of China was chosen for investigation in the present study and a digital camera was used to measure herb community coverage in the field, adopting methods of ocular estimation, gridding measurement, visual interpretation, supervised classification, and information extraction of color spatial transformation to calculate the VFC of images captured by the digital camera. In addition VFC calculated by various methods was analyzed and compared VFC, enabling us to propose an effective method for measuring VFC using a digital camera. The results of the present study indicate that: (i) as two common useful and effective methods of measuring VFC with a digital camera, not only does the error of estimated values of visual estimation and supervised classification vary considerably, but the degree of automatization is very low and depends, to a great extent, on the manipulator; (ii) although the method of visual interpretation may assure the precision of the calculated VFC and enable the precision of results obtained using other methods to be determined, as far as large quantities of data are concerned, this method has the disadvantages of wasting time and energy, and the applications of this method are limited; (iii) the precision and stability of VFC calculated using the grid and node method are superior to those of visual estimation and supervised classification and inferior to those of visual interpretation, but, as for visual interpretation and supervised classification, gridding measurements are difficult to apply in practice because they are not time efficient; and (iv) in terms of the precision of calculation of the VFC, an information-extracting model based on an intensity, hue, saturation (IHS) color space-multi-component series segmentation strategy is superior to methods of ocular estimation, gridding measurement, and supervised classification. In terms of practical efficiency, the information-extracting model is superior to visual interpretation, supervised classification, and gridding measurement. It has been proven that estimating the VFC of the north temperate typical steppe using this model is feasible. This is very fundamental research work in grassland ecology.  相似文献   

6.
When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.  相似文献   

7.
A new method for predicting the gene acceptor site based on multi-objective optimization is introduced in this paper. The models for the acceptor, branch and distance between acceptor site and branch site were constructed according to the characteristics of the sequences from the exon-intron database and using common biological knowledge. The acceptor function, branch function and distance function were defined respectively, and the multi-objective optimization model was constructed to recognize the splice site. The test results show that the algorithm used in this study performs better than the SplicePredictor,which is one of the leading acceptor site detectors.  相似文献   

8.
Biological inspiration has spawned a wealth of solutions to both mechanical design and control schemes in the efforts to develop agile legged machines. This paper presents a compliant leg mechanism for a small six-legged robot, HITCR-ll, based on abstracted anatomy from insect legs. Kinematic structure, relative proportion of leg segment lengths and actuation system were analyzed in consideration of anatomical structure as well as muscle system of insect legs and desired mobility. A spring based passive compliance mechanism inspired by musculoskeletal structures of biological systems was integrated into distal segment of the leg to soften foot impact on touchdown. In addition, an efficient locomotion planner capable of generating natural movements for the legs during swing phase was proposed. The problem of leg swing was formulated as an optimal control procedure that satisfies a series of locomotion task terms while minimizing a biologically-based objective function, which was solved by a Gauss Pseudospectral Method (GPM) based numerical technique. We applied this swing generation algorithm to both a simulation platform and a robot prototype. Results show that the proposed leg structure and swing planner are able to successfully perform effective swing movements on rugged terrains.  相似文献   

9.
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.  相似文献   

10.
The unsteady hydrodynamics of a biomimetic fin attached to a cylindrical body has been studied numerically using a computational fluid dynamic (CFD) simulator based on an in-house solver of the Navier-Stokes equations, combined with a recently developed multi-block, overset grid method. The fin-body CFD model is based on a mechanical pectoral fin device, which consists of a cylindrical body and an asymmetric fin and can mimic flapping, rowing and feathering motions of the pectoral fins in fishes. First the multi-block, overset grid method incorporated into the NS solver was verified through an extensive study of unsteady flows past a single fin undergoing rowing and feathering motion. Then unsteady flows past the biomimetic fin-body model undergoing the same motions were computed and compared with the measurements of forces of the mechanical pectoral fin, which shows good agreement in both time-varying and time-averaged hydrodynamic forces. The relationship between force generation and vortex dynamics points to the importance of the match in fin kinematics between power and recovery strokes and implies that an optimal selection of parameters of phase lags between and amplitudes of rowing and feathering motions can improve the performance of labriform propulsion in terms of either maximum force generation or minimum mechanical power.  相似文献   

11.
Closed loop identification of transfer function model for an unstable bioreactor is proposed based on an optimization method using either a step or a pulse response of PI/PID controlled bioreactor. A simple method is proposed for the initial guesses of the parameters of the first order plus time delay (FOPTD) transfer function model. A PID controller is designed for the identified model. Simulation study on the nonlinear model equations of an unstable bioreactor exhibiting multiple steady-states shows that the PID controller designed on the identified FOPTD model gives a good closed loop response similar to the one designed based on the linearized model from the nonlinear model equations.  相似文献   

12.
Parameter identification of robot manipulators is an indispensable pivotal process of achieving accurate dynamic robot models. Since these kinetic models are highly nonlinear, it is not easy to tackle the matter of identifying their parameters. To solve the difficulty effectively, we herewith present an intelligent approach, namely, a heuristic particle swarm optimization (PSO) algorithm, which we call the elitist learning strategy (ELS) and proportional integral derivative (PID) controller hybridized PSO approach (ELPIDSO). A specified PID controller is designed to improve particles’ local and global positions information together with ELS. Parameter identification of robot manipulators is conducted for performance evaluation of our proposed approach. Experimental results clearly indicate the following findings: Compared with standard PSO (SPSO) algorithm, ELPIDSO has improved a lot. It not only enhances the diversity of the swarm, but also features better search effectiveness and efficiency in solving practical optimization problems. Accordingly, ELPIDSO is superior to least squares (LS) method, genetic algorithm (GA), and SPSO algorithm in estimating the parameters of the kinetic models of robot manipulators.  相似文献   

13.
In the most basic application of Ant Colony Optimization (ACO), a set of artificial ants find the shortest path between a source and a destination. Ants deposit pheromone on paths they take, preferring paths that have more pheromone on them. Since shorter paths are traversed faster, more pheromone accumulates on them in a given time, attracting more ants and leading to reinforcement of the pheromone trail on shorter paths. This is a positive feedback process that can also cause trails to persist on longer paths, even when a shorter path becomes available. To counteract this persistence on a longer path, ACO algorithms employ remedial measures, such as using negative feedback in the form of uniform evaporation on all paths. Obtaining high performance in ACO algorithms typically requires fine tuning several parameters that govern pheromone deposition and removal. This paper proposes a new ACO algorithm, called EigenAnt, for finding the shortest path between a source and a destination, based on selective pheromone removal that occurs only on the path that is actually chosen for each trip. We prove that the shortest path is the only stable equilibrium for EigenAnt, which means that it is maintained for arbitrary initial pheromone concentrations on paths, and even when path lengths change with time. The EigenAnt algorithm uses only two parameters and does not require them to be finely tuned. Simulations that illustrate these properties are provided.  相似文献   

14.
Adaptive control of dissolved oxygen concentration in a bioreactor   总被引:1,自引:0,他引:1  
A new adaptive DO (dissolved oxygen) concentration control algorithm considering DO electrode dynamics with response time delay has been developed. A system model with two time-varying parameters was used to relate the DO concentration with two control variables: air flow rate and agitation speed. Parameters of this model were estimated on-line using a regularized constant trace recursive least-squares method. An extended Kalman filter was used to remove the effect of noises from the DO concentration measurements and thus to improve control performance. A discrete one-step ahead control scheme was adopted to determine control actions based on the parameter estimation results. Experimental results showed that the new adaptive DO concentration control algorithm performed better than other algorithms tested, a PID controller and adaptive algorithms without the DO electrode dynamics.  相似文献   

15.
1 IntroductionIrisrecognitiontechniqueisbasedonthestableanddistinctiveirispatterns,andhasattractedmuchat tentionofsomeexpertsforthelastfewdecades .Sincethe 1990’s ,muchworkonirisrecognitionhasbeendoneandgreatprogresshasbeenmade[1- 4] .Nowadaysithasbecomeamostimportantbiometricsolutionforpersonalidentification .Anirishasanapproximatelycircularannularshape.Theiristexturehasarandomlydistributedstructureofdetails ,whichiscreatedbyradialandcon centricfurrows,pigmentspots,crypts ,pigmentfrillandc…  相似文献   

16.
Concentrations of substrates, glucose, and ammionia in biological processes have been on-line monitored by using glucose-flow injection (FIA) and ammonia-FIA systems. Based on the on-line monitored data the concentrations of substrates have been controlled by an on-off controller, a PID controller, and a neural network (NN) based controller. A simulation program has been developed to test the control quality of each controller and to estimate the control parameters. The on-off controller often produced high oscillations at the set point due to its low robustness. The control quality of a PID controller could have been improved by a high analysis frequency and by a short residence time of sample in a FIA system. A NN-based controller with 3 layers has been developed, and a 3(input)-2(hidden)-1(output) network structure has been found to be optimal for the NN-based controller. The performance of the three controllers has been tested in a simulated process as well as in a cultivation process ofSaccharomyces cerevisiae, and the performance has also been compared to simulation results. The NN-based controller with the 3-2-1 network structure was robust and stable against some disturbances, such as a sudden injection of distilled water into a biological process.  相似文献   

17.
The methylotrophic yeast Pichia pastoris is an effective system for recombinant protein productions that utilizes methanol as an inducer, and also as carbon and energy source for a Mut(+) (methanol utilization plus) strain. Pichia fermentation is conducted in a fed-batch mode to obtain a high cell density for a high productivity. An accurate methanol control is required in the methanol fed-batch phase (induction phase) in the fermentation. A simple "on-off" control strategy is inadequate for precise control of methanol concentrations in the fermentor. In this paper we employed a PID (proportional, integral and derivative) control system for the methanol concentration control and designed the PID controller settings on the basis of a Pichia growth model. The closed-loop system was built with four components: PID controller, methanol feed pump, fermentation process, and methanol sensor. First, modeling and transfer functions for all components were derived, followed by frequency response analysis, a powerful method for calculating the optimal PID parameters K(c) (controller gain), tau(I) (controller integral time constant), and tau(D) (controller derivative time constant). Bode stability criteria were used to develop the stability diagram for evaluating the designed settings during the entire methanol fed-batch phase. Fermentations were conducted using four Pichia strains, each expressing a different protein, to verify the control performance with optimal PID settings. The results showed that the methanol concentration matched the set point very well with only small overshoot when the set point was switched, which indicated that a very good control performance was achieved. The method developed in this paper is robust and can serve as a framework for the design of other PID feedback control systems in biological processes.  相似文献   

18.
Control of bioreactors has achieved importance in the recent years. This may be due to the fact that they are difficult to control which may be attributed to its nonlinear dynamic behavior. The model parameters of the bioreactor also vary in an unpredictable manner. The complexity of the biochemical processes inhibits the accurate modeling and also the lack of suitable sensors make the process state difficult to characterize. Considerable emphasis has been placed on the control of fed-batch fermentors because of their prevalence in industries. However, when production of biomass is to be optimized, continuous operation is desirable. Several procedures are available for the nonlinear control of processes, viz., differential geometric approach, internal model control approach, reference synthesis technique, predictive control design, etc., but the major disadvantage of these approaches is the computational time required to perform the prediction optimization. In this study, a nonlinear controller based on a polynomial discrete time model (NARMAX) is evaluated for its performance on a fermentor. It can be shown that a nonlinear self-tuning controller based on NARMAX model can be extended to the control of fermentors. The response is smooth for both load and setpoint changes even when process parameters are assumed to be zero and uncertainty in parameters are present and in the presence of controller constraints. The control action can be made more or less robust by changing the design parameters appropriately. Therefore, nonlinear self-tuning controller is suitable for control of industrial processes.  相似文献   

19.
The control of poly-beta-hydroxybutyrate (PHB) productivity in a continuous bioreactor with cell recycle is studied by simulation. A cybernetic model of PHB synthesis in Alcaligenes eutrophus is developed. Model parameters are identified using experimental data, and simulation results are presented. The model is interfaced to a multirate model predictive control (MPC) algorithm. PHB productivity and concentration are controlled by manipulating dilution rate and recycle ratio. Unmeasured time varying disturbances are imposed to study regulatory control performance, including unreachable setpoints. With proper controller tuning, the nonlinear MPC algorithm can track productivity and concentration setpoints despite a change in the sign of PHB productivity gain with respect to dilution rate. It is shown that the nonlinear MPC algorithm is able to track the maximum achievable productivity for unreachable setpoints under significant process/model mismatch. The impact of model uncertainty upon controller performance is explored. The multirate MPC algorithm is tested using three controllers employing models that vary in complexity of regulation. It is shown that controller performance deteriorates as a function of decreasing biological complexity.  相似文献   

20.
In this paper, a bionic optimization algorithm based dimension reduction method named Ant Colony Optimization -Selection (ACO-S) is proposed for high-dimensional datasets. Because microarray datasets comprise tens of thousands of features (genes), they are usually used to test the dimension reduction techniques. ACO-S consists of two stages in which two well-known ACO algorithms, namely ant system and ant colony system, are utilized to seek for genes, respectively. In the first stage, a modified ant system is used to filter the nonsignificant genes from high-dimensional space, and a number of promising genes are reserved in the next step. In the second stage, an improved ant colony system is applied to gene selection. In order to enhance the search ability of ACOs, we propose a method for calculating priori available heuristic information and design a fuzzy logic controller to dynamically adjust the number of ants in ant colony system. Furthermore, we devise another fuzzy logic controller to tune the parameter (q0) in ant colony system. We evaluate the performance of ACO-S on five microarray datasets, which have dimensions varying from 7129 to 12000. We also compare the performance of ACO-S with the results obtained from four existing well-known bionic optimization algorithms. The comparison results show that ACO-S has a notable ability to generate a gene subset with the smallest size and salient features while yielding high classification accuracy. The comparative results generated by ACO-S adopting different classifiers are also given. The proposed method is shown to be a promising and effective tool for mining high-dimension data and mobile robot navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号