首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.

Objectives

The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls.

Results

The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems.

Conclusion

We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.  相似文献   

3.
Approximately 28% of the human population have been exposed to Mycobacterium tuberculosis (MTB), with the overwhelming majority of infected individuals not developing disease (latent TB infection (LTBI)). While it is known that uncontrolled HIV infection is a major risk factor for the development of TB, the effect of underlying LTBI on HIV disease progression is less well characterized, in part because longitudinal data are lacking. We sorted all participants of the Swiss HIV Cohort Study (SHCS) with at least 1 documented MTB test into one of the 3 groups: MTB uninfected, LTBI, or active TB. To detect differences in the HIV set point viral load (SPVL), linear regression was used; the frequency of the most common opportunistic infections (OIs) in the SHCS between MTB uninfected patients, patients with LTBI, and patients with active TB were compared using logistic regression and time-to-event analyses. In adjusted models, we corrected for baseline demographic characteristics, i.e., HIV transmission risk group and gender, geographic region, year of HIV diagnosis, and CD4 nadir. A total of 13,943 SHCS patients had at least 1 MTB test documented, of whom 840 (6.0%) had LTBI and 770 (5.5%) developed active TB. Compared to MTB uninfected patients, LTBI was associated with a 0.24 decreased log HIV SPVL in the adjusted model (p < 0.0001). Patients with LTBI had lower odds of having candida stomatitis (adjusted odds ratio (OR) = 0.68, p = 0.0035) and oral hairy leukoplakia (adjusted OR = 0.67, p = 0.033) when compared to MTB uninfected patients. The association of LTBI with a reduced HIV set point virus load and fewer unrelated infections in HIV/TB coinfected patients suggests a more complex interaction between LTBI and HIV than previously assumed.

Surprisingly little is known about how latent tuberculosis infection alters human physiology and immune function. Extensive statistical analyses of the large Swiss HIV Cohort Study suggests that latent tuberculosis infection can be protective in individuals with HIV.  相似文献   

4.
Tuberculosis (TB) is the leading cause of mortality among those infected with human immunodeficiency virus (HIV-1) worldwide. HIV-1 load and heterogeneity are increased both locally and systemically in active TB. Mycobacterium tuberculosis (MTB) infection supports HIV-1 replication through dysregulation of host cytokines, chemokines, and their receptors. However the possibility that mycobacterial molecules released from MTB infected macrophages directly interact with CD4+ T cells triggering HIV-1 replication has not been fully explored. We studied the direct effect of different MTB molecules on HIV-1 replication (R5-tropic strain Bal) in anti-CD3- stimulated CD4+ T cells from healthy donors in an antigen presenting cell (APC)-free system. PIM6, a major glycolipid of the mycobacterial cell wall, induced significant increases in the percent of HIV-1 infected T cells and the viral production in culture supernatants. In spite of structural relatedness, none of the other three major MTB cell wall glycolipids had significant impact on HIV-1 replication in T cells. Increased levels of IFN-γ in culture supernatants from cells treated with PIM6 indicate that HIV-1 replication is likely dependent on enhanced T cell activation. In HEK293 cells transfected with TLR2, PIM6 was the strongest TLR2 agonist among the cell wall associated glycolipids tested. PIM6 increased the percentage of HIV infected cells and viral particles in the supernatant in a T-cell-based reporter cell line (JLTRg-R5) transfected with TLR1 and TLR2 but not in the cells transfected with the empty vector (which lack TLR2 expression) confirming that PIM6-induced HIV-1 replication depends at least partially on TLR2 signaling.  相似文献   

5.
结核分枝杆菌感染实验模型   总被引:3,自引:1,他引:2  
结核分枝杆菌是引起人结核病的主要病原,全世界约有1/3人口感染结核分枝杆菌。尽管该病原可感染并引起许多动物疾病,但人类是其中心宿主。为研究结核分枝杆菌的致病机理及宿主对本病原的保护性和免疫病理学反应,选择合适的动物模型非常必要。本文阐述了结核病研究中常用的实验模型及各种模型的优缺点。实验模型的合理应用将促进我们对结核病的认识,从中获取的资料将有助于我们发现更好的预防和治疗方案。  相似文献   

6.
Mycobacterium tuberculosis (MTB) expresses a set of genes known as the dormancy regulon in vivo. These genes are expressed in vitro in response to nitric oxide (NO) or hypoxia, conditions used to model MTB persistence in latent infection. Although NO, a macrophage product that inhibits respiration, and hypoxia are likely triggers in vivo, additional cues could activate the dormancy regulon during infection. Here, we show that MTB infection stimulates expression of heme oxygenase (HO-1) by macrophages and that the gaseous product of this enzyme, carbon monoxide (CO), activates expression of the dormancy regulon. Deletion of macrophage HO-1 reduced expression of the dormancy regulon. Furthermore, we show that the MTB DosS/DosT/DosR two-component sensory relay system is required for the response to CO. Together, these findings demonstrate that MTB senses CO during macrophage infection. CO may represent a general cue used by pathogens to sense and adapt to the host environment.  相似文献   

7.
8.
9.
The in vivo kinetics of antigen-presenting cells (APCs) in patients with advanced and convalescent tuberculosis (TB) is not well characterized. In order to target Mycobacterium tuberculosis (MTB) peptides- and HLA-DR-holding monocytes and macrophages, 2 MTB peptide-specific CD4+ T-cell receptor (TCR) tetramers eu and hu were successfully constructed. Peripheral blood (PBL) samples from inpatients with advanced pulmonary TB (PTB) were analyzed using flow cytometry, and the percentages of tetramer-bound CD14+ monocytes ranged from 0.26–1.44% and 0.21–0.95%, respectively; significantly higher than those measured in PBL samples obtained from non-TB patients, healthy donors, and umbilical cords. These tetramers were also able to specifically detect macrophages in situ via immunofluorescent staining. The results of the continuous time-point tracking of the tetramer-positive rates in PBL samples from active PTB outpatients undergoing treatment show that the median percentages were at first low before treatment, increased to their highest levels during the first month, and then began to decrease during the second month until finally reaching and maintaining a relatively low level after 3–6 months. These results suggest that there is a relatively low level of MTB-specific monocytes in advanced and untreated patients. Further experiments show that MTB induces apoptosis in CD14+ cells, and the percentage of apoptotic monocytes dramatically decreases after treatment. Therefore, the relatively low level of MTB-specific monocytes is probably related to the apoptosis or necrosis of APCs due to live bacteria and their growth. The bactericidal effects of anti-TB drugs, as well as other unknown factors, would induce a peak value during the first month of treatment, and a relatively low level would be subsequently reached and maintained until all of the involved factors reached equilibrium. These tetramers have diagnostic potential and can provide valuable insights into the mechanisms of antigen presentation and its relationship with TB infection and latent TB infection.  相似文献   

10.
HIV-1 is an enveloped virus that enters target cells by fusion either directly at the plasma membrane or at the endosomal membrane. The latter mechanism follows a rapid engulfment of HIV-1 after its receptor engagement at the cell surface, and its scale depends on cellular endocytosis/degradation rates and virus fusion kinetics. HIV-1 has recently been shown to exploit a novel Pak1-dependent macropinocytosis mechanism as a way to productively infect macrophages. However, macrophages are highly heterogeneous cells that can adapt functionally to their changing environment, and their endosomal/lysosomal pathway is highly regulated upon cell activation. These changes might impact the ability of HIV-1 to exploit endocytosis as a way to productively infect macrophages. In this study, we compared HIV-1 endocytosis/degradation rates in nonactivated, M1-activated, and M2a-activated monocyte-derived macrophages (MDMs). We found that the rate of HIV-1 endocytosis was increased in M1-activated but decreased in M2a-activated MDMs. However, both M1 and M2a activations of MDMs led specifically to a greater clathrin-mediated endocytosis of HIV-1, which was independent of CD4 and CCR5 binding. Furthermore, clathrin-mediated endocytosis is unlikely to result in productive HIV-1 infection, given that it leads to increased viral degradation. Therefore, we suggest that viral fusion following endocytosis is restricted in activated macrophages.  相似文献   

11.
Tuberculosis (TB) is an infectious disease with a peculiar feature: Upon infection with the causative agent, Mycobacterium Tuberculosis (MTB), most hosts enter a latent state during which no transmission of MTB to new hosts occurs. Only a fraction of latently infected hosts develop TB disease and can potentially infect new hosts. At first glance, this seems like a waste of transmission potential and therefore an evolutionary suboptimal strategy for MTB. It might be that the human immune response keeps MTB in check in most hosts, thereby preventing it from achieving its evolutionary optimum. Another possible explanation is that long latency and progression to disease in only a fraction of hosts are evolutionary beneficial to MTB by allowing it to persist better in small host populations. Given that MTB has co-evolved with human hosts for millenia or longer, it likely encountered small host populations for a large share of its evolutionary history and had to evolve strategies of persistence. Here, we use a mathematical model to show that indeed, MTB persistence is optimal for an intermediate duration of latency and level of activation. The predicted optimal level of activation is above the observed value, suggesting that human co-evolution has lead to host immunity, which keeps MTB below its evolutionary optimum.  相似文献   

12.
The interferon (IFN)-γ response to peptides can be a useful diagnostic marker of Mycobacterium tuberculosis (MTB) latent infection. We identified promiscuous and potentially protective CD4+ T-cell epitopes from the most conserved regions of MTB antigenic proteins by scanning the MTB antigenic proteins GroEL2, phosphate-binding protein 1 precursor and 19 kDa antigen with the TEPITOPE algorithm. Seven peptide sequences predicted to bind to multiple human leukocyte antigen (HLA)-DR molecules were synthesised and tested with IFN-γ enzyme-linked immunospot (ELISPOT) assays using peripheral blood mononuclear cells (PBMCs) from 16 Mantoux tuberculin skin test (TST)-positive and 16 TST-negative healthy donors. Eighty-eight percent of TST-positive donors responded to at least one of the peptides, compared to 25% of TST-negative donors. Each individual peptide induced IFN-γ production by PBMCs from at least 31% of the TST-positive donors. The magnitude of the response against all peptides was 182 ± 230 x 106 IFN-γ spot forming cells (SFC) among TST-positive donors and 36 ± 62 x 106 SFC among TST-negative donors (p = 0.007). The response to GroEL2 (463-477) was only observed in the TST-positive group. This combination of novel MTB CD4 T-cell epitopes should be tested in a larger cohort of individuals with latent tuberculosis (TB) to evaluate its potential to diagnose latent TB and it may be included in ELISPOT-based IFN-γ assays to identify individuals with this condition.  相似文献   

13.
The entry of primate immunodeficiency viruses into cells is dependent on the interaction of the viral envelope glycoproteins with receptors, CD4, and specific members of the chemokine receptor family. Although in many cases the tropism of these viruses is explained by the qualitative pattern of coreceptor expression, several instances have been observed where the expression of a coreceptor on the cell surface is not sufficient to allow infection by a virus that successfully utilizes the coreceptor in a different context. For example, both the T-tropic simian immunodeficiency virus (SIV) SIVmac239 and the macrophagetropic (M-tropic) SIVmac316 can utilize CD4 and CCR5 as coreceptors, and both viruses can infect primary T lymphocytes, yet only SIVmac316 can efficiently infect CCR5-expressing primary macrophages from rhesus monkeys. Likewise, M-tropic strains of human immunodeficiency virus type 1 (HIV-1) do not infect primary rhesus monkey macrophages efficiently. Here we show that the basis of this restriction is the low level of CD4 on the surface of these cells. Overexpression of human or rhesus monkey CD4 in primary rhesus monkey macrophages allowed infection by both T-tropic and M-tropic SIV and by primary M-tropic HIV-1. By contrast, CCR5 overexpression did not specifically compensate for the inefficient infection of primary monkey macrophages by T-tropic SIV or M-tropic HIV-1. Apparently, the limited ability of these viruses to utilize a low density of CD4 for target cell entry accounts for the restriction of these viruses in primary rhesus monkey macrophages.  相似文献   

14.
Monocytes/macrophages (M/M) and CD4+ T cells are two important targets of human immunodeficiency virus (HIV) infection. Different strains of HIV-1 vary markedly in their abilities to infect cells belonging to the M/M lineage. Macrophagetropic (M-tropic) HIV-1 strains replicate well in primary lymphocytes as well as in primary macrophages; however, they generally infect T-cell lines poorly, if at all. Although promonocytic cell lines such as U937 have been used as in vitro models of HIV-1 infection of M/M, these cell lines are susceptible to certain T-cell-tropic (T-tropic) HIV-1 strains but are resistant to M-tropic HIV-1. In this study, we demonstrate that (i) certain U937 clones (“plus” clones), which are susceptible only to T-tropic HIV-1, become highly susceptible to M-tropic HIV-1 upon differentiation with retinoic acid (RA); (ii) other U937 clones (“minus” clones), which are resistant to both T- and M-tropic HIV-1, remain resistant to both viruses; and (iii) RA treatment induces expression of CCR5, a fusion/entry cofactor for M-tropic HIV-1 in both types of U937 clones, and yet enhances the fusogenicity of the plus clones, but not the minus clones, with M-tropic Env’s. These results indicate that the major restriction of M-tropic HIV-1 infection in promonocytic cells occurs at the fusion/entry level, that differentiation into macrophage-like phenotypes renders some of these cells highly susceptible to infection with M-tropic HIV-1, and that CD4 and CCR5 may not be the only determinants of fusion/entry of M-tropic HIV-1 in these cells.  相似文献   

15.
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.  相似文献   

16.
Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS-generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase-peroxidase-peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild-type C57Bl/6 mice and NOS2(-/-) mice, the DeltakatG MTB strain was indistinguishable from wild-type MTB in its ability to replicate and persist in gp91(Phox-/-) mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the DeltakatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2(-/-) mice, but indistinguishable from wild-type MTB in gp91(Phox-/-) macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.  相似文献   

17.
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.  相似文献   

18.
19.
Mycobacterium tuberculosis is one of the worlds' most successful and sophisticated pathogens. It is estimated that over 2 billion people today harbour latent M. tuberculosis infection without any clinical symptoms. As most new cases of active tuberculosis (TB) arise from this (growing) number of latently infected individuals, urgent measures to control TB reactivation are required, including post-exposure/therapeutic vaccines. The current bacille Calmette-Guérin (BCG) vaccine and all new generation TB vaccines being developed and tested are essentially designed as prophylactic vaccines. Unfortunately, these vaccines are unlikely to be effective in individuals already latently infected with M. tuberculosis. Here, we argue that detailed analysis of M. tuberculosis genes that are switched on predominantly during latent stage infection may lead to the identification of new antigenic targets for anti-TB strategies. We will describe essential host-pathogen interactions in TB with particular emphasis on TB latency and persistent infection. Subsequently, we will focus on novel groups of late-stage specific genes, encoded amongst others by the M. tuberculosis dormancy (dosR) regulon, and summarise recent studies describing human T-cell recognition of these dormancy antigens in relation to (latent) M. tuberculosis infection. We will discuss the possible relevance of these new classes of antigens for vaccine development against TB.  相似文献   

20.
One third of the earths population is infected with Mycobacterium tuberculosis (Mtb), but only 5-10% of the infected individuals develop active tuberculosis (TB) over their lifetime. The remaining 90-95% stay healthy and are called latently infected individuals. They are the biggest reservoir of the tubercle bacilli and identifying the cases of latent TB is a part of the global plan of TB control. From the clinical point of view detection of latent TB infections (LTBI) in individuals with the highest active TB risk including cases of HIV infection, autoimmune inflammatory diseases or cancer, is a priority. This review summarizes the recent findings in the pathogenesis of latent TB, its diagnosis, treatment and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号