首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 251 毫秒
1.
In this study, the gonadal morphology of untreated and sex-reversed juvenile triploid and gynogenetic diploid coho salmon was compared with that of diploids. Testes of triploids were of the same size as those of diploids. Spermatogonia, however, were significantly bigger than those of diptoids in both diameter (P<0·001) and volume (P<0·01), suggesting that this characteristic can be a useful indicator of ploidy in the early stages of gonadal development. In females, induction of triploidy did not affect the lamellar structure of the ovaries but reduced their size considerably. Further, these ovaries had no oocytes. Treatment of triploids with oestrogen resulted in the feminization of genotypic males, which had ovaries similar to those found in tripioid females. However, gonads of triploid males partially sex-re versed into females were identified by their enlargement, the presence of remnants of the male vascular system, and by the appearance of ovarian lacunae and germinal and somatic cells typical of triploid females, Induction of gynogenesis resulted in 100% females, of which 34% had ovaries of reduced size with areas devoid of oocytes. However, and contrary to what has been found in cyprinids, no male germ cells were observed in these ovaries. This discrepancy may reflect differences, in the mechanisms of sex determination between salmonids and cyprinids. Treatment of gynogenetics with androgen increased the number of fish with abnormal ovaries but also resulted in the production of phenotypic-male gynogenetic diploids, of which 11% had testes indistinguishable from those of untreated control diploids.  相似文献   

2.
Adult triploid zebrafish Danio rerio has previously been reported to be all male. This phenomenon has only been reported in one other gonochoristic fish species, the rosy bitterling Rhodeus ocellatus, despite the fact that triploidy is induced in numerous species. To investigate the mechanism responsible, we first produced triploid zebrafish and observed gonad development. Histological sections of juvenile triploid gonads showed that primary growth oocytes were able to develop in the juvenile ovary, but no cortical alveolus or more advanced oocytes were found. All adult triploids examined were male (n = 160). Male triploids were able to induce oviposition by diploid females during natural spawning trials, but fertilization rates were low (1.0 ± 3.1%) compared with diploid male siblings (67.4 ± 16.6%). The embryos produced by triploid sires were aneuploid with a mean ploidy of 2.4 ± 0.1n, demonstrating that triploid males produce aneuploid spermatozoa. After confirming that adult triploids are all male, we produced an additional batch of triploid zebrafish and exposed them (and a group of diploid siblings) to 100 ng/L estradiol (E2) from 5 to 28 dpf. The E2 treated triploids and nontreated triploids were all male. The nontreated diploids were also all male, but the E2 treated diploids were 89% female. This demonstrates that triploidy acts downstream of estrogen synthesis in the sex differentiation pathway to induce male development. Based on this and the observations of juvenile gonad development in triploids, we suggest that triploidy inhibits development of oocytes past the primary growth stage, and this causes female to male sex reversal.  相似文献   

3.
Marine organisms living at low temperatures tend to have larger genomes and larger cells which suggest that these traits can be beneficial in colder environments. In fish, triploidy (three complete sets of chromosomes) can be induced experimentally following fertilization, which provides a model system to investigate the hypothesis that larger cells and genomes offers a physiological advantage at low temperatures. We tested this hypothesis by measuring metabolic rates and swimming performance of diploid and triploid Atlantic salmon (Salmo salar) post smolts acclimated to 3 or 10.5 °C. At 10.5 °C, triploids had significantly lower maximum metabolic rates which resulted in a lower aerobic scope compared to diploids. In addition, triploids initiated ram ventilation at lower swimming speeds, providing further evidence of a reduced capacity to meet oxygen demands during strenuous activity at 10.5 °C. However, at 3 °C, metabolic rates and critical swimming speeds were similar between both ploidies, and as expected substantially lower than at 10.5 °C. Therefore, triploidy in colder environments did not provide any advantage over diploidy in terms of metabolic rate traits or swimming performance in Atlantic salmon. We therefore conclude that traits, other than aerobic scope and swimming performance, contribute to the trend for increased cell and genome size in marine ectotherms living in cold environments.  相似文献   

4.
Loaches (Misgurnus anguillicaudatus) were collected from 35 localities in Japan and assayed by flow cytometry to determine ploidy status. No tetraploids were found, with samples from 33 localities having no or few (1.2–3.2%) triploids. Samples collected from Ichinomiya Town, Aichi Prefecture, showed a relatively high rate of triploidy (7.7%). Samples collected from a fish farm in Hirokami Village, Niigata Prefecture, also showed high proportions of triploids (2.0–15.8%), these triploid males being sterile, but the females producing both large-sized triploid and small-sized haploid eggs. Such eggs developed bisexually rather than gynogenetically, giving rise to viable tetraploid and diploid offspring after normal fertilization. Of eight diploid females obtained from the same locality, one produced a high incidence of viable diploid gynogens (55%) after gynogenetic induction by fertilization with UV-irradiated spermatozoa. These observations indicated the presence of diploid fish which produced both diploid and haploid eggs. Thus, triploid and diploid individuals were also produced after fertilization with haploid spermatozoa. These results suggested that the occurrence of such unreduced eggs may be a cause of natural polyploidization in this species.  相似文献   

5.
Ploidy induction and sex control in fish   总被引:19,自引:0,他引:19  
Pandian  T. J.  Koteeswaran  R. 《Hydrobiologia》1998,384(1-3):167-243
  相似文献   

6.
This paper details for the first time the gonad development characteristics and sex ratio of triploid shrimp (Fenneropenaeus chinensis). In triploid shrimp the development of gonad is apparently impaired, especially in females. In the ovary of triploids, germ cells mainly remain at oogonia stage during September through December. From January to February of the next year, partial primary oocytes developed in the ovary lobes. Spermatocytes and spermatids could be observed in the testes of triploids, and a few sperm were observed in the vas deferens and spermatophores. The morphology of sperms in triploid shrimp was abnormal. Flow cytometry was used to detect the ploidy of sperm in the vas deferens. The data showed that triploidy could affect the sex ratio in Chinese shrimp. The female-to-male ratio in triploids of about 4:1 will favor triploid shrimp aquaculture.  相似文献   

7.
Triploid induction offers a way of considerably reducing fertility in fish, and could therefore be employed to help ensure that any adverse environmental impact of transgenic fish was markedly less. In order to produce sterile growth-enhanced transgenic fish, we have induced triploidy in two lines of transgenic tilapia. Growth performance and gonadal development were analyzed following triploidization by heat shock. Ploidy status was confirmed by nuclear size measurement of erythrocytes. Erythrocytes of triploids were found to be 1.5 times larger than diploids. Observations of growth enhancement and gonadal development were made on diploids and triploids from both transgenic and nontransgenic full sibling batches. In both lines, transgenic diploids were superior in growth performance, followed by transgenic triploids, nontransgenic diploids, and nontransgenic triploids. Although the testes of transgenic triploids were significantly smaller than those of nontransgenic triploids and nontransgenic diploids, histologically they did not show signs of gross deformation. There were also some spermatozoa present in the testes of some triploids, which could be indicative of reproductive functionality. However, the ovaries were devoid of oocytes, underdeveloped, and deformed in all triploids and were completely nonfunctional. Although the best growth performance was shown by the fertile diploid transgenics, the triploid transgenic females could offer a good option for aquaculture purposes because they showed superior growth performance over the normal wild-type tilapias with the advantage of sterility to ensure nonhybridization and noncontamination with the local gene pool. However, careful monitoring of potential gene flow would be required prior to commercial use. Received December 1, 1998; accepted May 18, 1999.  相似文献   

8.
Triploidy can occur naturally or be induced in fish and shellfish during artificial propagation in order to produce sterile individuals. Fisheries managers often stock these sterile triploids as a means of improving angling opportunities without risking unwanted reproduction of the stocked fish. Additionally, the rearing of all‐triploid individuals has been suggested as a means to reduce the possibility of escaped aquaculture fish interbreeding with wild populations. Efficient means of determining if an individual is triploid or diploid are therefore needed both to monitor the efficacy of triploidy‐inducing treatments and, when sampling fish from a body of water that has a mixture of diploids and triploids, to determine the ploidy of a fish prior to further analyses. Currently, ploidy is regularly measured through flow cytometry, but this technique typically utilizes a fresh blood sample. This study presents an alternative, cost‐effective method of determining ploidy by analysing amplicon‐sequencing data for biallelic single‐nucleotide polymorphisms (SNPs). For each sample, heterozygous genotypes are identified and the likelihoods of diploidy and triploidy are calculated based on the read counts for each allele. The accuracy of this method is demonstrated using triploid and diploid brook trout (Salvelinus fontinalis) genotyped with a panel of 234 SNPs and Chinook salmon (Oncorhynchus tshawytscha) genotyped with a panel of 298 SNPs following the GT‐seq methodology of amplicon sequencing.  相似文献   

9.

Background

Unisexuality, or all female reproduction, is rare among vertebrates. Studying these exceptional organisms may give useful information with respect to the evolution and maintenance of sexual reproduction. Poecilia formosa was the first unisexual vertebrate species to be detected and since then has served as a paradigmatic organism for unisexuality and studies on the evolution of sex. It reproduces through gynogenesis, using sperm of males from related species to trigger parthenogenetic development of the unreduced diploid eggs. Like in other unisexual vertebrates, triploids occur in a certain range of P. formosa. It has been suggested that the addition of the host species derived third chromosome set is evolutionary important. Clonal organisms lack sufficient genotypic diversity for adaptive changes to variable environments. Also non-recombining genomes cannot purge deleterious mutations and therefore unisexual organisms should suffer from a genomic decay. Thus, polyploidization leading to triploidy should bring "fresh" genetic material into the asexual lineage. To evaluate the importance of triploidy for maintaining the asexual species, it is important to know whether such an introgression event happens at a reasonable frequency.

Results

In an earlier study it was found that all triploid P. formosa in the Rio Purificación river system are of monophyletic origin. Here we have analyzed fish from a different river system. Using microsatellite analysis we can show that the triploids from this new location are genetically divergent and most probably of an independent origin.

Conclusion

Our data support the hypothesis that triploidy was not a single chance event in the evolutionary history of P. formosa and hence might be a relevant mechanism to increase genotypic divergence and at least partially counteract the genetic degeneration connected to asexuality. It is, however, much rarer than in other asexual vertebrates analyzed so far and thus probably only of moderate evolutionary importance for the maintenance of the asexual breeding complex.  相似文献   

10.
Henry IM  Dilkes BP  Young K  Watson B  Wu H  Comai L 《Genetics》2005,170(4):1979-1988
Polyploidy, the inheritance of more than two genome copies per cell, has played a major role in the evolution of higher plants. Little is known about the transition from diploidy to polyploidy but in some species, triploids are thought to function as intermediates in this transition. In contrast, in other species triploidy is viewed as a block. We investigated the responses of Arabidopsis thaliana to triploidy. The role of genetic variability was tested by comparing triploids generated from crosses between Col-0, a diploid, and either a natural autotetraploid (Wa-1) or an induced tetraploid of Col-0. In this study, we demonstrate that triploids of A. thaliana are fertile, producing a swarm of different aneuploids. Propagation of the progeny of a triploid for a few generations resulted in diploid and tetraploid cohorts. This demonstrated that, in A. thaliana, triploids can readily form tetraploids and function as bridges between euploid types. Genetic analysis of recombinant inbred lines produced from a triploid identified a locus on chromosome I exhibiting allelic bias in the tetraploid lines but not in the diploid lines. Thus, genetic variation was subject to selection contingent on the final ploidy and possibly acting during the protracted aneuploid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号