首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
Plants of a pure line variety, G 24, of Cicer arietinum L. were grown in sand culture. After an initial dose of a complete nutrient solution, a nitrogen free nutrient solution was supplied to the sand at intervals and a standard rhizobial culture was added twice. The plants were treated with two concentrations of ascorbic acid (20 mg/l and 100 mg/l) through the rooting medium. At suitable intervals two pots from each treatment were sampled. Observations were made regarding the earliest initiation of nodulation, the number, weight and colour of nodules and the nitrogen content of different plant organs under various treatments. Ascorbic acid (AA) treatments considerably enhanced nodule initiation. AA was found to increase the number and the fresh and dry weights of nodules tremendously and maximally under both concentrations used. The nodules were, on the whole, more pink under AA treatments and their greening was considerably delayed thus increasing their functional span. The nitrogen content of AA-treated plants was over 2.5 times that in the control. This increase in nitrogen content fully reflected itself in growth by an increase in the weight of all plant organs. Treatment with 20 mg/l AA stands out prominently above all others in this respect. Pod formation started earlier and the pod and seed weights were also much higher in the AA treatments than in the control. Treatment with 20 mg/l AA was on the whole more promotive than that with 100 mg/l. The enhancement in the nodulation and the functional efficiency of nodules by AA treatments has been attributed to the capacity of AA to increase the loci and rates of cell division by promoting nucleic acid and protein synthesis and its action as a powerful electron donor. The results show that nodulation is yet another phenomenon wherein AA plays the role of an important hormone.  相似文献   

2.
GA3 as well as SA (salicylic acid) and β-N (β-naphthol) induce floral buds in Impatiens balsamina under strictly non-inductive photoperiods. The floral bud initiation is accelerated when 1 mg/1 SA is used in combination with 100 mg/1 GA3. 100 mg/1 GA3+ 1 mg/1 SA and 100 mg/1 GA3+ 100 mg/1 β-N increase the number of floral buds as compared with 100 mg/1 GA3 alone.  相似文献   

3.
Streeter JG 《Plant physiology》1982,69(6):1429-1434
Nodulated soybean plants (Glycine max [L.] Merr) were grown in sand culture without combined N or with a continuous supply of nitrate in nutrient solution. Moderate nitrate concentration (30 milligrams N per liter) had little effect on nodule weight/plant while high nitrate concentration (100 milligrams N per liter) depressed nodule weight/plant by 70 to 80% with harvests 30 to 60 days after planting and initiation of nitrate treatments.  相似文献   

4.
A sand culture experiment assessed whether gibberellic acid(GA3) could alleviate the adverse effects of salt stress on thegrowth, ion accumulation and photosynthetic capacity of two spring wheatcultivars, Barani-83 (salt sensitive) and SARC-I (salt tolerant).Three-week-oldplants of both cultivars were exposed to 0, 100 and 200 molm–3 NaCl in Hoagland's nutrient solution. Threeweeks after the initiation of salt treatments, half of the plants of eachcultivar were sprayed overall with 100 mg L–1GA3 solution. Plants were harvested 3 weeks after theapplication of GA3. Fresh and dry weights of shoots and roots, plantheight and leaf area were decreased with increasing supply of salt, butgibberellic acid treatment caused a significant ameliorative effect on both thecultivars with respect to these growth attributes. However, GA3caused no significant change in grain yields but increased grain size in boththe cultivars. Saline growth medium caused a marked increase in theconcentrations of Na+ and Cl in shoots androots of both the lines. However, with the application of GA3accumulation of Na+ and Cl was enhanced inboth shoots and roots of both wheat lines, but more ions accumulated in saltsensitive Barani-83 than in salt tolerant SARC-1. Net CO2assimilation rate (A) of both wheat lines decreased consistently withincreasingsupply of NaCl, but application of GA3 alleviated the effect of saltstress on this variable in both the cultivars. However, the ameliorative effectof the hormone was more pronounced in Barani-83 than in SARC-1. Althoughwater-use efficiency (A/E=CO2assimilation/transpiration) and intrinsic water use efficiency(A/gs=CO2 assimilation/stomatalconductance) decreased significantly with increasing salt concentration of thegrowth medium in both the cultivars, GA3 was more effective inenhancing both the water-use attributes in Barani-83 than in SARC-1. Overall,GA3 treatment stimulated the vegetative growth of both cultivars ofwheat under salt stress, but it caused a slight reduction in grain yield.GA3 treatment enhanced the accumulation of Na+ andCl in both shoots and roots of wheat plants under saltstress.It also caused a significant increase in photosynthetic capacity in both linesat the vegetative stage under both saline and non-saline media.  相似文献   

5.
以1年生紫斑牡丹幼苗为试验材料,采用不同浓度(0、100、300、500 mg/L)赤霉素(GA_3)喷施叶片处理,通过透射电镜、扫描电镜、光学显微镜观察幼苗叶片解剖结构,光合仪测定幼苗光合参数并以酶联免疫吸附法测叶片内源激素含量,探究外源GA_3对紫斑牡丹幼苗叶片解剖结构、光合特性和内源激素水平的影响。结果表明:(1)低浓度GA_3处理的紫斑牡丹叶肉细胞增大,栅栏组织外层细胞中叶绿体数量增加,高浓度GA_3处理则与之相反;GA_3处理叶片的栅栏组织/海绵组织比值(P/S)、组织结构紧密度(CTR)均下降,而其组织结构疏松度(SR)增加;GA_3处理的幼苗叶片的叶肉细胞内各叶绿体大小显著大于对照,随着GA_3处理浓度增加,紫斑牡丹叶肉细胞内叶绿体的体积趋于增大,类囊体垛叠凝聚逐渐松散,叶绿体上淀粉颗粒在300 mg/L GA_3处理中较明显;叶片气孔长度、宽度、气孔器大小、气孔开度和气孔密度随着GA_3浓度升高先升高后下降,同时叶片上表皮角质层厚度随GA_3浓度的升高而增加。(2)紫斑牡丹叶片净光合速率(P_n)、气孔导度(Cond)、蒸腾速率(T_r)、水分利用率(WUE)在100和300 mg/L GA_3处理下大都显著高于对照,且300 mg/L GA_3处理显著高于其余处理,而其在500 mg/L GA_3处理下显著低于对照。(3)紫斑牡丹叶片脱落酸(ABA)和吲哚乙酸(IAA)含量均在500 mg/L GA_3下显著高于对照,而在其余浓度处理下不同程度低于对照,叶片内源玉米素核苷(ZR)和GA_3含量均在300 mg/L GA_3处理下显著高于其余处理和对照,而其余处理相比对照均无显著变化;叶片的ZR/ABA、ZR/IAA、ZR/GA_3和(IAA+GA_3+ZR)/ABA比值都在300 mg/L GA_3处理下显著高于其他处理,叶片的IAA/ABA和ABA/GA_3比值均在500 mg/L GA_3处理下显著高于其他处理。研究发现,适宜浓度外源GA_3处理,能显著提高紫斑牡丹幼苗叶片光合速率、水分利用效率及蒸腾速率,调节植物体内源激素的含量及平衡,从而使叶片能合成较多有机物,促进幼苗生长。  相似文献   

6.
One-yr-old loblolly pine seedlings of two half-sib families, grown in sand, were fertilized three times per week with nutrient solution containing 20 μg/ml (low) or 80 μg/ml (high) nitrogen. Nitrogen concentration in the nutrient solution was either constant throughout the experiment, or interehanged after the inoculation of stems or shoots with Fusarium subglutinans, 55 days after initiation of fertilization. Growth was suppressed by a weekly excision of shoots branching from the stem apex. Either high nitrogen nutrition or shoot excision generally enhanced canker elongation on stem inoculated plants; the combination of both was extremely conducive for disease development. With intact plants of family 8–68, interchange of pre-inoculation low nitrogen nutrition with high nitrogen after inoculation enhanced canker elongation and rate of wilt. Nitrogen content varied in wood, bark and needles, as well as with time intervals, but was consistently in accordance with nitrogen level in the nutrient solution. In shoot excised plants, nitrogen content was higher than in the respective treatment without shoot excision. The higher nitrogen nutrient accelerated disease development on inoculated shoots, compared to low nitrogen, on both pine families. With respective treatments, stem cankers were larger and rates of shoots exhibiting lesions or wilt were higher on plants of family 8–68 than on 8–61. It is postulated that the disease enhancing effect associated with higher nitrogen content in stem tissues results from an increased nitrogen availability to the pathogen.  相似文献   

7.
Significant male and female flowering (cone bud production) by girdled branches of 6-year-old Douglas fir (Pseudotsuga menziesii (Mirb. Franco) seedlings was promoted by applications (mid-April to June) of 1.6 or 3.2 mg per branch (in total) of certain non-polar gibberellins (GA's). Girdling alone was ineffective. When tested alone, a mixture of GA4/7 was most effective. GA9 less so, while GA5 and the more polar GA3 were essentially ineffective. For female cone buds GA4/7+ GA9 were synergistically effective, but for male cone buds GA4/7 alone was best. The auxin naphthaleneacetic acid (NAA) was not tested alone, but at low dosage (0.175 mg/branch in total) NAA enhanced the flowering efficacy of GA's for both sexes; at a high dosage (0.875 mg/branch in total) male cone bud production was further enhanced, but only at the expense of females. For female flowering the best treatment (90% frequency of flowering 6.8 cone buds/branch), was GA4/7+ GA9+ low NAA; for male flowering, it was GA4/7+ high NAA (30% frequency and 4.2 cone buds/branch. Frequency of flowering for controls was 18% and 0%, average number of cone buds/branch was 0.9 and 0, for females and males, respectively. The successful treatments did not affect promordia initiation, rather they caused the differentiation of previously initiated, but undetermined, lateral primordia into cone and latent buds at the expense of vegetative bud differentiation. The lack of success reported by earlier workers in promoting flowering in Pinaceae species by GA's appears to be the unfortunate result of selecting GA3 for initial testing. The practical implications of this early and enhanced flowering by non-polar GA's seedlings of a commercially important conifer are discussed in relation to accelerating the processes of tree improvement.  相似文献   

8.
U. Benecke 《Plant and Soil》1970,33(1-3):30-48
Summary InAlnus viridis nodule growth relative to plant growth was inversely related to the quantity of nitrate added to nutrient solutions. Nodulated plants showed maximum growth when grown independently of supplied nitrogen and made better growth in its absence than unnodulated plants at any level of added nitrogen. Low levels of nitrate caused a depression of growth of nodulated plants, apparently by suppressing both nitrogen fixation and nodule growth. Nodules in nitrogen-free sand culture fixed atmospheric nitrogen at a rate of 6.6 mg/day/g nodule. Phosphorus deficiency was induced by low levels of phosphate and resulted in small plants with dark-green foliage. Root and nodule growth as a percentage of total plant growth and the percentage of total accumulated plant nitrogen below ground were greater at a root temperature of 11°C than 21°C. Thus at low root temperature processes other than nitrogen fixation were limiting to plant growth. Excised nodules were exposed to an N 2 15 -enriched atmosphere. A positive correlation between rate of nitrogen fixation and temperature was obtained, with optimum fixation occurring at about 20°C. It was shown that in spite of decreasing mean temperatures with increase in altitude, rate of nitrogen fixation by nodules of plants growing in the field increased with increase in altitude. This latter trend was deduced to be a reflection of the extent to which the field sites were nitrogen deficient in relation to climatically possible growth.  相似文献   

9.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

10.
CCC, uniconazol, ancymidol, prohexadione-calcium (BX-112), and CGA 163′935, which represent three groups of gibberellin (GA) biosynthesis inhibitors, were applied as a soil drench to Sorghum bicolor cultivars 58M (phyB-1, phytochrome B-deficient mutant) and 90M (phyB-2, equivalent phenotypically to wild type, PHYB, except for small differences in flowering dates). The inhibitors that block steps before GA12 (CCC, uniconazol, and ancymidol) lowered the concentrations of all endogenous early-C13α-hydroxylation pathway GAs found in sorghum: GA12, GA53, GA44, GA19, GA20, GA1, and GA8. In contrast, the inhibitors that block the conversion of GA20→ GA1, (CGA 163′935 and BX-112) drastically reduced GA1 and GA8 levels, but they either did not change or caused accumulation of intermediates from GA12 to GA20. Combinations of pre-GA12 inhibitors and GA3 plus GA1 strongly reduced GAs other than GA1 and GA3. Each of these compounds inhibited shoot growth in both cultivars and delayed floral initiation in 90M. Floral initiation of 58M was also delayed by CCC, uniconazol, and ancymidol but not by CGA 163`935 and BX-112. This separation of shoot elongation from floral initiation in sorghum is novel. Both inhibition of shoot growth and delayed floral initiation were almost completely relieved by a mixture of GA3 and GA1 in both 58M and 90M. This observation, plus the much lower levels of endogenous GA3 than of GA1 observed in these experiments, implies that GA1 is the major endogenous GA active in shoot elongation. CGA 163′935 and BX-112 also failed to promote tillering in 58M, whereas inhibitors active before GA12 did so. The possibility that the GA20→ GA1 inhibitors fail to block flowering and promote tillering in 58M because biosynthetic intermediates between GA12 and GA20 accumulate and/or because 58M is altered in GA metabolism in this same region of the biosynthetic pathway is discussed. Received April 7, 1998; accepted July 31, 1998  相似文献   

11.
Gibberellic acid (GA,), chlorflurenol and ethrel were applied at different concentrations to either male or female trees of Myrica esculenta. GA3 induced intersexual flowers both on the male and female trees whereas chlorflurenol and ethrel induced similar (intersexual) flowers but only on the male plants. When GA3 was applied in combination with chlorflurenol, fewer intersexual inflorescences appeared on the male plants along with a significant decline in the number of flowers per inflorescence. In combination, chlorflurenol and ethrel induced copious female and intersexual inflorescences per male plant, especially when two successive treatments of 100 mg/I of chlorflurenol and 1920 mg/l of ethrel were applied. The induced female inflorescences later bore fruits.  相似文献   

12.
Gibberellic acid (GA3) increases the height of Impatiens balsamina under both 8- and 24-h photoperiods. The height also increases with all guanosine monophosphates (GMPs) under 8-h photoperiods but only with 5′-GMP under 24-h photoperiods. GA3 as well as GMPs increase the number of leaves under 8-h but not under 24-h photoperiods. GA3 as well as GMPs induce floral buds under strictly non-inductive photoperiods and increase the number of floral buds under 8-h photoperiods. The floral bud initiation occurs earlier when cGMP is used in combination with 100 mg/l GA3.  相似文献   

13.
A single treatment of plants with GA3 (gibberellic acid) is not adequate to cause induction under LD (long day: 24-h photo-period) condition, but its effect is added to the sub-threshold induction caused by one SD (short day: 8-h photoperiod) cycle. Floral bud initiation is hastened, and the number of floral buds and flowers per flowering plant increases in plants receiving a single treatment with the combination GA3+ SA (salicylic acid) accompanying a single SD cycle. However, the increase on 10 replicate basis is more marked in plants receiving three treatments with the combination GA3+β-N (β-naphthol) and five treatments with the combination GA3+ SA accompanying six and 10 SD cycles, respectively. The number of floral buds and flowers decreases with an increase hi the number of SD cycles, but it is higher in plants treated with GA3, SA or GA3+β-N than in the water-treated controls. — Under long days, treatment of plants with the combinations GA3+ SA or GA3+β-N accelerates the initiation as well as increases the number of floral buds. While a minimum of five treatments with GA3 or of 25 with SA or β-N alone is needed for floral bud initiation under a 24-h photoperiod, three treatments are adequate to induce floral buds with the combination GA3+ SA or GA3+β-N under continuous illumination. Ten or more treatments with these combinations under a 24-h photoperiod produce more flowers than the same treatments under an 8-h photoperiod.  相似文献   

14.
Lima bean (Phaseolus lunatus L.) plants inoculated with Bradyrhizobium sp. strain 127E14 displayed a period of marked internode elongation that was not observed in plants inoculated with other compatible bradyrhizobia, including strain 127E15. When strain 127E14 nodulated an alternate host, cowpea (Vigna unguiculata L. Walp), a similar, although less dramatic growth response induced by the bacteria was observed. It has been speculated that the elongative growth promotion brought about by inoculation with strain 127E14 is mediated by gibberellins (GAs). Using deuterated internal standards and gas chromatography-mass spectroscopy analysis, we have quantified the levels of GA1, GA20, GA19, and GA44 in nodules and stems of two varieties of lima bean (bush and pole) and one variety of cowpea that were inoculated with either strain 127E14 or 127E15. In nodules formed by strain 127E14 on lima bean, endogenous levels of GA20 and GA19 were 10 to 40 times higher (35-88 ng/g dry weight) than amounts found in nodules formed by strain 127E15 (2.2-3.9 ng/g dry weight). Relative amounts of GA44 were also higher (4- to 11-fold) in 127E14 nodules, but this increase was less pronounced. The rhizobial-induced increase of these GAs in the nodule occurred in both pole and bush varieties and seemed to be independent of host morphology. Regardless of rhizobial inoculum, levels of the “bioactive” GA1 in the nodule (0.3-1.1 ng/g dry weight) were similar. In cowpea nodules, a similar, although smaller, difference in GA content due to rhizobial strain was observed. The concentration of GA1 in lima bean stems was generally higher than that observed in the nodule, whereas concentrations of the other GAs measured were lower. In contrast with the nodule, GA concentrations in lima bean stems were not greater in plants inoculated with strain 127E14, and in some cases the slower growing plants inoculated with strain 127E15 actually had higher levels of GA20, GA19, and GA44. Thus, there were major differences in concentrations of the precursors to GA1 in nodules formed by the two bacterial strains, which were positively correlated with the observed elongation growth. These results support the hypothesis that the rhizobial strain modifies the endogenous GA status of the symbiotic system. This alteration in GA balance within the plant, presumably, underlies the observed growth response.  相似文献   

15.
The endogenous levels of GA1, GA3, GA4, GA7, GA8, GA9, GA19 and GA20 were determined in beech seeds (Fagus sylvatica L.) treated with different dormancy breaking treatments. Gibberellins were analysed separately in cotyledons and embryo axes. After purification of the extracts, GAs were quantified by GC-MS-selected ion monitoring (GC-MS-SIM) with deuterated GAs as internal standards. The results showed that GAs corresponding to the 13-OH pathway seemed to be involved in dormancy breaking. Strong differences in GA1, GA3, GA8, GA19 and GA20 levels between embryo axes and cotyledons of dormant and non-dormant beechnuts were detected with less pronounced differences for GA4, GA7 and GA9 levels. Both the quantitative differences between dormant and non-dormant seeds in the analysed GAs corresponding to the 13-OH pathway, and the capacity of non-dormant seeds to carry out metabolic conversions when labelled GA20 was injected into the seeds, reveal a dynamic role of GAs in dormancy release.  相似文献   

16.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

17.
In the present study, the germination characteristics of three endemic species from Turkey, Tripleurospermum pichleri (Boiss.) Bornm., Cirsium leucopsis D.C and Senecio olympicus Boiss. (Asteraceae), were investigated. Germination was studied for fresh seeds, for seeds subjected to short‐time chilling (15 days, moist +4°C), to GA3 (100, 150 and 250 ppm) and a combination of chilling and GA3; in all cases seeds were incubated either at 20/10°C day/night with light daytime or at 20°C in darkness with daily short‐time dim light (DSDL). In C. leucopsis seeds, all GA3 treatments enhanced the final germination percentages. The mean germination time (MGT) of C. leucopsis was lower under DSDL than with photoperiod. The chilling treatment with GA3 in DSDL significantly increased germination in S. olympicus seeds (from 45 to 87%). Germination increased to 55% in T. pichleri by chilling under photoperiod compared with 32% by chilling followed by DSDL. In conclusion, these three co‐existing endemic Asteraceae species have different germination behaviours; something that should be taken into account for ex situ propagation. However, an efficient way to germinate all species is to use 250 ppm GA3 and 20/10°C with photoperiod.  相似文献   

18.
The triazole plant growth regulators, paclobutrazol and uniconazole, reduced in vitro growth of moth bean callus by 20–25% when added to the culture medium at 1 mg/L (3.4 μM). The addition of 10 mg/L (29 μM) gibberellic acid (GA3) to the culture medium in combination with the triazoles restored callus growth to a level equivalent to that of the untreated control. GA3 alone had little effect on callus growth. When added to a regeneration medium at 1 mg/L both paclobutrazol and uniconazole reduced the percentage of cultures that formed roots, as well as the mean number of roots per culture. In contrast, GA3 increased root formation and counteracted the inhibitory effects of the triazoles on rooting. The addition of triazoles or GA3 to the regeneration medium reduced the formation of green meristematic nodules, which are precursors of shoots in moth bean callus. When callus was grown in the presence of either paclobutrazol or uniconazole, subsequent root and green meristematic nodule formation were reduced upon transfer to a growth regulator-free regeneration medium. The results of this study indicate that exposure of moth bean callus tissue to micromolar concentrations of triazoles or GA3 can significantly alter in vitro growth and differentiation.  相似文献   

19.
Gibberellic acid (GA3) 20 mg 1?1 and (2-chloroethyl) phosphonic acid (Ethephon) 10 mg 1?1 enhanced pollen tube length in Crotalaria juncea L. GA3 markedly increased the activity of amylase, acid phosphatase and β-glucosidase and enhanced leaching of amylase and acid phosphatase enzymes. The rise in the activity level and leaching of amylase and acid phosphatase after Ethephon treatment was comparatively less than that of GA3 and the response to Ethephon was restricted to the 45 and 90 min period of culturing. Ethephon did not affect the activity/leaching of β-glucosidase significantly. Actinomycin-D (Act.D) 25 mg l?1 and Cycloheximide (CH) 10 mg 1?1 reduced the tube growth as well as activity of these enzymes suggesting their de novo synthesis during pollen tube growth.  相似文献   

20.
The combined effects of salt stress and gibberellic acid (GA3) on plant growth and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Treatments were (1) control (C): nutrient solution alone, (2) salt stress (S): 100 mM NaCl, (3) S + GA1: 100 mM NaCl and 50 ppm GA3 and (4) S + GA2: 100 mM NaCl and 100 ppm GA3. Salt stress (S) was found to reduce the total dry matter, chlorophyll content, relative water content (RWC), but to increase proline accumulation, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; 1.10.3.1) enzyme activities and electrolyte leakage. GA3 treatments overcame to variable extents the adverse effects of NaCl stress on the above physiological parameters. GA3 treatments reduced the activities of enzyme in the salt-stressed plants. Salt stress reduced some macro and micronutrient concentrations but exogenous application of GA3 increased these to levels of control treatment. Foliar application of GA3 counteracted some of the adverse effects of NaCl salinity with the accumulation of proline which maintained membrane permeability and increased macro and micronutrient levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号