首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cytosolic leucyl-tRNA synthetase was heterologously expressed in a baculovirus system and purified to homogeneity. The molecular mass (135 kDa) of the enzyme is close to the theoretical value derived from its cDNA. The kinetic constants of the enzyme for ATP, leucine, and tRNA(Leu) in the ATP-PP(i) exchange and tRNA leucylation reactions were determined, and the results showed that it is quite active as a free enzyme. Human cytosolic leucyl-tRNA synthetase expressed in human 293 T cells localizes predominantly to the cytosol. Additionally, it is found to have a long C-terminal extension that is absent from bacterial and yeast LeuRSs. A C-terminal 89-amino acid truncated human cytosolic leucyl-tRNA synthetase was constructed and purified, and the catalytic activities, thermal stability, and subcellular location were found to be almost identical to native enzyme. In vivo and in vitro experiments, however, show that the C-terminal extension of human cytosolic leucyl-tRNA synthetase is indispensable for its interaction with the N-terminal of human cytosolic arginyl-tRNA synthetase in the macromolecular complex. Our results also indicate that the two molecules interact with each other only through their appended domains.  相似文献   

3.
4.
Previous studies showed that valyl-tRNA synthetase of Saccharomyces cerevisiae contains an N-terminal polypeptide extension of 97 residues, which is absent from its bacterial relatives, but is conserved in its mammalian homologues. We showed herein that this appended domain and its human counterpart are both nonspecific tRNA-binding domains (K(d) approximately 0.5 microm). Deletion of the appended domain from the yeast enzyme severely impaired its tRNA binding, aminoacylation, and complementation activities. This N-domain-deleted yeast valyl-tRNA synthetase mutant could be rescued by fusion of the equivalent domain from its human homologue. Moreover, fusion of the N-domain of the yeast enzyme or its human counterpart to Escherichia coli glutaminyl-tRNA synthetase enabled the otherwise "inactive" prokaryotic enzyme to function as a yeast enzyme in vivo. Different from the native yeast enzyme, which showed different affinities toward mixed tRNA populations, the fusion enzyme exhibited similar binding affinities for all yeast tRNAs. These results not only underscore the significance of nonspecific tRNA binding in aminoacylation, but also provide insights into the mechanism of the formation of aminoacyl-tRNAs.  相似文献   

5.
The cytoplasmic and mitochondrial species of human lysyl-tRNA synthetase are encoded by a single gene by means of alternative splicing of the KARS1 gene. The cytosolic enzyme possesses a eukaryote-specific N-terminal polypeptide extension that confers on the native enzyme potent tRNA binding properties required for the vectorial transfer of tRNA from the synthetase to elongation factor EF1A within the eukaryotic translation machinery. The mitochondrial enzyme matures from its precursor upon being targeted to that organelle. To understand how the cytosolic and mitochondrial enzymes are adapted to participate in two distinct translation machineries, of eukaryotic or bacterial origin, we characterized the mitochondrial LysRS species. Here we report that cleavage of the precursor of mitochondrial LysRS leads to a mature enzyme with reduced tRNA binding properties compared to those of the cytoplasmic counterpart. This adaptation mechanism may prevent inhibition of translation through sequestration of lysyl-tRNA on the synthetase in a compartment where the bacterial-like elongation factor EF-Tu could not assist in its dissociation from the synthetase. We also observed that the RxxxKRxxK tRNA-binding motif of mitochondrial LysRS is not functional in the precursor form of that enzyme and becomes operational after cleavage of the mitochondrial targeting sequence. The finding that maturation of the precursor is needed to reveal the potent tRNA binding properties of this enzyme has strong implications for the spatiotemporal regulation of its activities and is consistent with previous studies suggesting that the only LysRS species able to promote packaging of tRNA(Lys) into HIV-1 viral particles is the mature form of the mitochondrial enzyme.  相似文献   

6.
Previous studies have shown that translation of mrna for yeast glycyl-tRNA synthetase is alternatively initiated from UUG and a downstream AUG initiation codon. Evidence presented here shows that unlike an AUG initiation codon, efficiency of this non-AUG initiation codon is significantly affected by its sequence context, in particular the nucleotides at positions -3 to -1 relative to the initiation codon. A/A/R (R represents A Or G) and C/G/C appear to be the most and least favorable sequences at these positions, respectively. Mutation of the native context sequence -3 to -1 from AAA to CGC reduced translation initiation from the UUG codon up to 32-fold and resulted in loss of mitochondrial respiration. although an AUG initiation codon is, in general, unresponsive to context changes in yeast, an AAA (-3 to -1) to CGC mutation still reduced its initiating activity up to 8-fold under similar conditions. these results suggest that sequence context is more important for translation initiation in yeast than previously appreciated.  相似文献   

7.
Tissue-specific isozymes of glutamine synthetase are present in elasmobranchs. A larger isozyme occurs in tissues in which the enzyme is localized in mitochondria (liver, kidney) whereas a smaller form occurs in tissues in which it is cytosolic (brain, spleen, etc.). The nucleotide sequence of spiny dogfish shark (Squalus acanthias) liver glutamine synthetase mRNA, derived from its cDNA, shows there are two in-frame initiation codons (AUG) at the N-terminus which will account for the size differences between the two isozymes. Initiation at the up-stream and down-stream sites would yield peptides of 45,406 and 41,869 mol. wts. representing the precursor of the mitochondrial isozyme and the cytosolic isozyme, respectively. The additional N-terminal 29 amino acids present in the mitochondrial isozyme precursor contains two putative cleavage sites based on the Arg-X-(Phe,Ile,Leu) motif. The predicted two-step processing would remove 14 of the 29 N-terminal amino acids. These 14 amino acids can be predicted to form a very strong amphipathic mitochondrial targeting signal. Their removal would yield a mature peptide of 43,680 mol. wt. The calculated mol. wts. based on the derived amino acid sequence are therefore in good agreement with previous estimates of an approximately 1.5–2-kDa difference between the Mrs of the mitochondrial and cytosolic isozymes. A model for the evolution of the mitochondrial targeting of glutamine synthetase in vertebrates is proposed. Correspondence to: J.W. CampbellThe nucleotide sequence reported will appear in GenBank under accession number U04617  相似文献   

8.
The DNA nucleotide sequence of the valS gene encoding valyl-tRNA synthetase of Escherichia coli has been determined. The deduced primary structure of valyl-tRNA synthetase was compared to the primary sequences of the known aminoacyl-tRNA synthetases of yeast and bacteria. Significant homology was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. In pairwise comparisons the highest level of homology was detected between the homologous valyl-tRNA synthetases of yeast and E. coli, with an observed 41% direct identity overall. Comparisons between the valyl- and isoleucyl-tRNA synthetases of E. coli yielded the highest level of homology detected between heterologous enzymes (19.2% direct identity overall). An alignment is presented between the three branched-chain aminoacyl-tRNA synthetases (valyl- and isoleucyl-tRNA synthetases of E. coli and yeast mitochondrial leucyl-tRNA synthetase) illustrating the close relatedness of these enzymes. These results give credence to the supposition that the branched-chain aminoacyl-tRNA synthetases along with methionyl-tRNA synthetase form a family of genes within the aminoacyl-tRNA synthetases that evolved from a common ancestral progenitor gene.  相似文献   

9.
The preceding paper (Bec, G., Kerjan, P., Zha, X.D., and Waller, J.P. (1989) J. Biol. Chem. 264, 21131-21137) described the purification to apparent homogeneity from rabbit liver, of a heterotypic complex comprising valyl-tRNA synthetase and Elongation Factor 1H. In the present study, valyl-tRNA synthetase was dissociated and separated from the other components of this complex by hydroxylapatite chromatography in the presence of 0.5 M NaSCN. The properties of the homogeneous mammalian enzyme were compared to those of the corresponding enzyme from yeast. Both behaved as monomeric entities, with apparent molecular masses of 140 and 125 kDa, respectively. Furthermore, both displayed strong affinity toward the polyanionic support heparin-Ultrogel, a property not manifested by the corresponding prokaryotic enzyme. However, unlike the yeast enzyme, that of mammalian origin additionally exhibited hydrophobic properties, as reflected by its affinity toward phenyl-Sepharose. A structural model is proposed according to which mammalian valyl-tRNA synthetase has conserved the polycationic N-terminal domain that distinguishes the corresponding lower eukaryotic enzyme from its prokaryotic counterpart, while acquiring a hydrophobic domain most likely responsible for its association to Elongation Factor 1H.  相似文献   

10.
11.
12.
It was previously shown that ALA1, the only alanyl-tRNA synthetase gene in Saccharomyces cerevisiae, codes for two functionally exclusive protein isoforms through alternative initiation at two consecutive ACG codons and an in-frame downstream AUG. We reported here the cloning and characterization of a homologous gene from Candida albicans. Functional assays show that this gene can substitute for both the cytoplasmic and mitochondrial functions of ALA1 in S. cerevisiae and codes for two distinct protein isoforms through alternative initiation from two in-frame AUG triplets 8-codons apart. Unexpectedly, although the short form acts exclusively in cytoplasm, the longer form provides function in both compartments. Similar observations are made in fractionation assays. Thus, the alanyl-tRNA synthetase gene of C. albicans has evolved an unusual pattern of translation initiation and protein partitioning and codes for protein isoforms that can aminoacylate isoaccepting tRNAs from a different species and from across cellular compartments.  相似文献   

13.
It was recently shown that ALA1, the only alanyl-tRNA synthetase gene in Saccharomyces cerevisiae, uses two successive ACG triplets as the translation initiators for its mitochondrial form. Evidence presented here argues that the second ACG triplet not only acts as a remedial initiation site for scanning ribosomes that skip the first ACG, but also enhances the activity of the preceding initiator by providing a preferable "A" at its relative position +4. Therefore, ALA1 constructs with redundant ACG initiators exhibit stronger complementing activity and express a higher level of protein than do those with a single ACG initiator. A similar scenario is seen when a single or redundant ACG triplets are placed in the positions of the first and second AUG initiators of VAS1, which serve as the start sites of the mitochondrial and cytoplasmic forms of valyl-tRNA synthetase, respectively. Cumulatively, the results suggest that this feature of redundancy of non-AUG initiators in a single mRNA per se may represent a novel paradigm for improving the efficiency of a poor or otherwise nonproductive initiation event.  相似文献   

14.
D Kern  R Giegé  S Robre-Saul  Y Boulanger  J P Ebel 《Biochimie》1975,57(10):1167-1176
Two forms of baker's yease valyl-tRNA synthetase have been purified to apparent homogeneity by classical methods. It was demonstrated that one of the two forms of the enzyme originates from the other by proteolysis, the respective amounts of each form depending on the physiological state of the yeast. The species mainly isolated from exponential growing yeast cells is a monomer of 130,000 daltons molecular weight. In stationary phase cells or in commercial yeast the major species is a degraded monomer of 120,000 daltons molecular weight ; however when the purification is carried out in the presence of phenylmethyl-sulphonyl fluoride, or diisopropylfluorophosphate large amounts of the not - degreded monomer can be obtained. Of great practical usefulness is the fact that large amounts of the native enzyme can be obtained pure after only two chromatographic steps on DEAE-cellulose and hydroxylapatite. The kinetic constants for valine, ATP and tRNAVal were determined, as well as the optimum aminoacylation conditions. It was found that the specific activity of the nondegraded valyl-tRNA synthetase is higher than that of the proteolysed enzyme for the aminoacylation reaction. On the contrary, both forms have the same ATP-pyroposphate exchange activity. The amino acids composition of the native enzyme was established. The tryptic fingerprints of the two valyl-tRNA synthetases were studied. Essentially similar maps were obtained. The number of the spots in the fingerprints indicates that the enzymes contain a high proportion of repeated sequences.  相似文献   

15.
We have partially purified the messenger RNAs for yeast arginyl-, aspartyl-, valyl-, alpha and beta subunits of phenylalanyl-tRNA synthetases in order to study their biosynthesis and ultimately, to isolate their genes. Sucrose gradient fractionation of poly U-Sepharose selected mRNAs resulted in a ten fold enrichment of the in vitro translation activity of these mRNAs. The translation products of messenger RNAs for arginyl- and valyl-tRNA synthetases have the same molecular weight as the purified enzymes; translation of aspartyl-tRNA synthetase messenger RNA yielded a 68 kD molecular weight polypeptide (while the purified cristallisable enzyme appears as a 64-66 kD doublet, which, as we showed is a proteolysis product). The translation of the mRNAs for alpha and beta phenylalanyl-tRNA synthetase gave polypeptides having the same molecular weight as those obtained from the purified enzyme, but the major translation products are slightly heavier, indicating that they may be translated as precursors. As estimated from centrifugation experiments mRNAs of arginyl-, aspartyl-, alpha and beta subunits of phenylalanyl-tRNA synthetase were 1700-2000 nucleotides long, indicating that alpha and beta are translated from two different mRNAs.  相似文献   

16.
In plant mitochondria, some of the tRNAs are encoded by the mitochondrial genome and resemble their prokaryotic counterparts, whereas the remaining tRNAs are encoded by the nuclear genome and imported from the cytosol. Generally, mitochondrial isoacceptor tRNAs all have the same genetic origin. One known exception to this rule is the group of tRNA(Gly) isoacceptors in dicotyledonous plants. A mitochondrion-encoded tRNA(Gly) and at least one nucleus-encoded tRNA(Gly) coexist in the mitochondria of these plants, and both are required to allow translation of all four GGN glycine codons. We have taken advantage of this atypical situation to address the problem of tRNA/aminoacyl-tRNA synthetase coevolution in plants. In this work, we show that two different nucleus-encoded glycyl-tRNA synthetases (GlyRSs) are imported into Arabidopsis thaliana and Phaseolus vulgaris mitochondria. The first one, GlyRS-1, is similar to human or yeast glycyl-tRNA synthetase, whereas the second, GlyRS-2, is similar to Escherichia coli glycyl-tRNA synthetase. Both enzymes are dual targeted, GlyRS-1 to mitochondria and to the cytosol and GlyRS-2 to mitochondria and chloroplasts. Unexpectedly, GlyRS-1 seems to be active in the cytosol but inactive in mitochondrial fractions, whereas GlyRS-2 is likely to glycylate both the organelle-encoded tRNA(Gly) and the imported tRNA(Gly) present in mitochondria.  相似文献   

17.
In eukaryotes, the cytoplasmic and mitochondrial forms of a given aminoacyl-tRNA synthetase (aaRS) are typically encoded by two orthologous nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. We herein report a novel scenario of aaRS evolution in yeast. While all other yeast species studied possess a single nuclear gene encoding both forms of alanyl-tRNA synthetase (AlaRS), Vanderwaltozyma polyspora, a yeast species descended from the same whole-genome duplication event as Saccharomyces cerevisiae, contains two distinct nuclear AlaRS genes, one specifying the cytoplasmic form and the other its mitochondrial counterpart. The protein sequences of these two isoforms are very similar to each other. The isoforms are actively expressed in vivo and are exclusively localized in their respective cellular compartments. Despite the presence of a promising AUG initiator candidate, the gene encoding the mitochondrial form is actually initiated from upstream non-AUG codons. A phylogenetic analysis further revealed that all yeast AlaRS genes, including those in V. polyspora, are of mitochondrial origin. These findings underscore the possibility that contemporary AlaRS genes in V. polyspora arose relatively recently from duplication of a dual-functional predecessor of mitochondrial origin.  相似文献   

18.
The one-carbon metabolism enzymes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) can be found on a single trifunctional protein in the eukaryotes examined. The one exception is in spinach leaves where 10-formyltetrahydrofolate synthetase is monofunctional (Nour, J. M., and Rabinowitz, J. C. (1991) J. Biol. Chem. 266, 18363-18369). In the prokaryotes examined, 10-formyltetrahydrofolate synthetase is either absent or is monofunctional. A cDNA clone encoding spinach leaf 10-formyltetrahydrofolate synthetase was isolated through the use of antibodies to the purified enzyme. This clone had an open reading frame of 1914 base pairs and encoded for a protein containing 636 amino acids with a calculated M(r) of 67,727. The percentage identity between spinach 10-formyltetrahydrofolate synthetase and the synthetase domains in the four trifunctional eukaryotic enzymes and the two monofunctional prokaryotic enzymes that have been cloned and sequenced was: 64.9% human, 63.8% rat, 55.6% yeast cytoplasm, 53.8% yeast mitochondria, 47.8% Clostridium acidi-urici, and 47.9% Clostridium thermoaceticum. Clearly the spinach monofunctional protein had greatest homology with the mammalian proteins. The spinach protein is longer than the two other monofunctional prokaryotic proteins. Possible reasons for this are presented. The codon usage and the putative translation initiation sites are examined and compared with other spinach proteins.  相似文献   

19.
《Journal of molecular biology》2019,431(7):1460-1467
Kgd4 is a novel subunit of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDH). In yeast, the protein is present in two forms of unknown origin, as there is only one open reading frame and no alternative splicing. Here, we show that the two forms of Kgd4 derive from one mRNA that is translated by employing two alternative start sites. The standard, annotated AUG codon gives rise to the short form of the protein, while an upstream UUG codon is utilized to generate the larger form. However, both forms can be efficiently imported into mitochondria and stably incorporate into KGDH to support its activity. Translation of the long variant depends on sequences directly upstream of the alternative initiation site, demonstrating that translation initiation and its efficiency are dictated by the sequence context surrounding a specific codon. In summary, the two forms of Kgd4 follow a very unusual biogenesis pathway, supporting the notion that translation initiation in yeast is more flexible than it is widely recognized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号