首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
Abstract.  Objectives : Recent studies have suggested the potential of mesenchymal stem cells (MSCs) to differentiate into a hepatocyte-like lineage. Here, we evaluate the efficacy of hepatocyte differentiation of MSCs by studying acquisition of hepatocyte-like features together with alteration of the native mesenchymal phenotype. Material and methods : In vitro , we have investigated protein and mRNA level expression of hepatocyte and mesenchymal markers of mesenchymal-derived hepatocyte-like cells (MDHLCs) and we have evaluated their functionality using metabolic assays. In vivo , we investigated co-expression of hepatocyte (albumin, α-foetoprotein, cytokeratin 18) and mesenchymal (fibronectin, vimentin) markers after transplantation of MSCs or MDHLCs into severe combined immune deficiency mice. Results : We observed that while in vitro these cells acquired some phenotypic and functional features of mature hepatocytes, they partially preserved their mesenchymal phenotype. After intrasplenic transplantation, engrafted MSCs with isolated expression of fibronectin and α-foetoprotein were observed. When these cells were injected into the liver, they expressed all analysed markers, confirming the chimaeric co-expression observed in vitro . Conversely, liver-engrafted MDHLCs conserved their hepatocyte-lineage markers but lost their chimaeric phenotype. Conclusions : Hepatocyte differentiation of MSCs predominantly allows the acquisition of phenotypic hallmarks and provides chimaeric cells that maintain expression of initial lineage markers. However, advanced maturation to the hepatocyte-like phenotype could be obtained in vivo by conditioning MSCs prior to transplantation or by infusing cells into the liver micro-environment.  相似文献   

5.
Stem cell niches provide the micro-environment for the development of stem cells. Under our culturing regimen, a kind of osteoclast-centralized structure supports the proliferation of MSCs, derived from human cord blood, once they reside on osteoclasts. MSCs in this structure expressed Oct4 which is a marker of embryonic stem cells. Floating daughter cells of MSCs colony showed abilities to differentiate into osteocyte, adipocyte, and neuronal progenitor cells. Compared with the easy senescence of MSCs without this niche-like structure in vitro, these results suggested that osteoclasts might play an important role the development and maintenance of Umbilical cord blood (UCB)-derived MSCs and might provide a means to expand UCB-MSCs in vitro, more easily, through a stem cell niche-like structure.  相似文献   

6.
Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising cell population for supporting new clinical cellular therapies. Currently, bone marrow represents the main source of MSCs, but their differentiation capacity declines with age. We have identified possible novel multilineage mesenchymal cells from human placenta. In addition to their multilineage differentiation, they have a direct immunosuppressive effect on proliferation of T lymphocytes from human adult peripheral blood (PB) and umbilical cord blood (UCB) in vitro. This immunoregulatory feature strongly implies that they have a potential application in allograft transplantation. Since placenta and UCB can be obtained from the same donor, placenta is an attractive source of MSCs for co-transplantation in conjunction with UCB-derived hematopoietic stem cells to reduce the potential of graft-versus-host disease in recipients. However, the way that they modulate the immune system is unclear. In this investigation, we have addressed the effects of human placental MSCs on various subtypes of UCB-derived and PB-derived T lymphocytes. This study was supported by a grant from the National Natural Science Foundation (no. 30571949), by the Beijing Nova Star program, by the Beijing Elitist Fund (20051D0301029), and by the Beijing Obstetrics and Gynecology Hospital.  相似文献   

7.
Kang KS  Kim SW  Oh YH  Yu JW  Kim KY  Park HK  Song CH  Han H 《Cytotherapy》2005,7(4):368-373
HLA-matched UC blood-derived multipotent stem cells were directly transplanted into the injured spinal cord site of a 37-year-old female patient suffering from spinal cord injury (SPI). In this case, human cord blood (UCB)-derived multipotent stem cells improved sensory perception and movement in the SPI patient's hips and thighs within 41 days of cell transplantation. CT and MRI results also showed regeneration of the spinal cord at the injured site and some of the cauda equina below it. Therefore, it is suggested that UCB multipotent stem cell transplantation could be a good treatment method for SPI patients.  相似文献   

8.
Mesenchymal stem cells from cryopreserved human umbilical cord blood   总被引:32,自引:0,他引:32  
Umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, but the presence of mesenchymal stem cells (MSCs) in UCB has been disputed and it remains to be validated. In this study, we examined the ability of cryopreserved UCB harvests to produce cells with characteristics of MSCs. We were able to obtain homogeneous plastic adherent cells from the mononuclear cell fractions of cryopreserved UCB using our culture conditions. These adherent cell populations exhibited fibroblast-like morphology and typical mesenchymal-like immunophenotypes (CD73+, CD105+, and CD166+, etc.). These cells presented the self-renewal capacity and the mesenchymal cell-lineage potential to form bone, fat, and cartilage. Moreover, they expressed mRNAs of multi-lineage genes including SDF-1, NeuroD, and VEGF-R1, suggesting that the obtained cells had the multi-differentiation capacity as bone marrow-derived MSCs. These results indicate that cryopreserved human UCB fractions can be used as an alternative source of MSCs for experimental and therapeutic applications.  相似文献   

9.
Implantation of bone-marrow-derived MSCs (mesenchymal stem cells) has emerged as a potential treatment modality for liver failure, but in vivo differentiation of MSCs into functioning hepatocytes and its therapeutic effects have not yet been determined. We investigated MSC differentiation process in a rat model of TAA (thioacetamide)-induced liver cirrhosis. Male Sprague-Dawley rats were administered 0.04% TAA-containing water for 8 weeks, MSCs were injected into the spleen for transsplenic migration into the liver, and liver tissues were examined over 3 weeks. Ingestion of TAA for 8 weeks induced micronodular liver cirrhosis in 93% of rats. Injected MSCs were diffusely engrafted in the liver parenchyma, differentiated into CK19 (cytokeratin 19)- and thy1-positive oval cells and later into albumin-producing hepatocyte-like cells. MSC engraftment rate per slice was measured as 1.0-1.6%. MSC injection resulted in apoptosis of hepatic stellate cells and resultant resolution of fibrosis, but did not cause apoptosis of hepatocytes. Injection of MSCs treated with HGF (hepatocyte growth factor) in vitro for 2 weeks, which became CD90-negative and CK18-positive, resulted in chronological advancement of hepatogenic cellular differentiation by 2 weeks and decrease in anti-fibrotic activity. Early differentiation of MSCs to progenitor oval cells and hepatocytes results in various therapeutic effects, including repair of damaged hepatocytes, intracellular glycogen restoration and resolution of fibrosis. Thus, these results support that the in vivo hepatogenic differentiation of MSCs is related to the beneficial effects of MSCs rather than the differentiated hepatocytes themselves.  相似文献   

10.
Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20–30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB‐MSC‐like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 × 106 cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL‐3, and 5 ng/mL Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Moreover, the UCB‐MSC‐like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens‐DR (HLA‐DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB‐MSCs by adding suitable cytokines into the culture system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号