首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

2.
Physiological mechanisms involved in acclimation to variable salinity and oxygen levels and their interaction were studied in European flounder. The fish were acclimated for 2 weeks to freshwater (1 per thousand salinity), brackish water (11 per thousand) or full strength seawater (35 per thousand) under normoxic conditions (water Po(2) = 158 mmHg) and then subjected to 48 h of continued normoxia or hypoxia at a level (Po(2) = 54 mmHg) close to but above the critical Po(2). Plasma osmolality, [Na(+)] and [Cl(-)] increased with increasing salinity, but the rises were limited, reflecting an effective extracellular osmoregulation. Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na(+)/K(+)-ATPase activity did not change with salinity, but hypoxia caused a 25% decrease in branchial Na(+)/K(+)-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant decrease in mRNA levels of the Na(+)/K(+)-ATPase alpha1-subunit, signifying a reduced expression of the transporter gene. The reduced ATPase activity did not influence extracellular ionic concentrations. Blood [Hb] was stable with salinity, and it was not increased by hypoxia. Instead, hypoxia decreased the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O(2) affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na(+)/K(+)-ATPase activity, which did not compromise extracellular osmoregulation.  相似文献   

3.
Summary

The addition of juvenile hormone I (JH I) to membrane preparations of the follicle cells from vitellogenic follicles of the insect Rhodnius prolixus causes a significant increase in the phosphorylation of a 100 kDa polypeptide; and ouabain, a specific inhibitor of Na+K+-ATPase, eliminates this effect. H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine), an inhibitor of protein kinase C (PKC), also eliminates the JH-dependent phosphorylation of this polypeptide. PDBU (phorbol-12, 13-dibutyrate), an activator of PKC, mimics the action of JH in increasing the phosphorylation of the 100 kDa polypeptide. Because these findings parallel the action of JH in causing the patency, the appearance of large spaces between the follicle cells through which vitellogenin gains access to the oocyte surface, they suggest that phosphorylation of one or more membrane proteins is a key event in the development of patency in response to JH. The 100 kDa polypeptide may represent the a-subunit of Na+K+-ATPase.  相似文献   

4.
The role of ATP on regulation of the Na(+)/K(+)-ATPase activity in the human cancerous HeLa cells was investigated. HeLa cells stimulated with increasing ATP concentrations showed a dose-dependent inhibition of the Na(+)/K(+)-ATPase activity. These effects were also obtained by UTP. ATP and UTP provoked a rise in intracellular calcium concentration ([Ca(2+)](i)) persisting for at least 4 min. The inhibitor of phospholipase C, U73122, blocked the elevation of [Ca(2+)](i) provoked by ATP/UTP. The expression of mRNA for P2Y2 and P2Y6 receptors was demonstrated by RT-PCR. ATP/UTP activated PKC-alpha, -betaI and -epsilon isoforms, but not PKC-delta and -zeta. The inhibition of the Na(+)/K(+)-ATPase activity by ATP/UTP was blocked by G?6976, a specific inhibitor of the calcium-dependent PKCs. In conclusion, our results suggest that ATP/UTP modulate Na(+)/K(+)-ATPase activity in HeLa cells through the P2Y2 purinoceptor via calcium mobilisation and activation of calcium-dependent PKCs.  相似文献   

5.
Effects of dimethyl sulfoxide (Me(2)SO) on substrate affinity for phosphorylation by inorganic phosphate, on phosphorylation by ATP in the absence of Na(+), and on ouabain binding to the free form of the Na(+)/K(+)-ATPase have been attributed to changes in solvation of the active site or Me(2)SO-induced changes in the structure of the enzyme. Here we used selective trypsin cleavage as a procedure to determine the conformations that the Na(+)/K(+)-ATPase acquires in Me(2)SO medium. In water or in Me(2)SO medium, Na(+)/K(+)-ATPase exhibited after partial proteolysis two distinct groups of fragments: (1) in the presence of 0.1 M Na(+) or 0.1 M Na(+) + 3 mM ADP (enzyme in the E1 state) cleavage produced a main fragment of about 76 kDa; and (2) in the presence of 20 mM K(+) (E2 state) a 58-kDa fragment plus two or three fragments of 39-41 kDa were obtained. Cleavage in Me(2)SO medium in the absence of Na(+) and K(+) exhibited the same breakdown pattern as that obtained in the presence of K(+), but a 43-kDa fragment was also observed. An increase in the K(+) concentration to 0.5 mM eliminated the 43-kDa fragment, while a 39- to 41-kDa doublet was accumulated. Both in water and in Me(2)SO medium, a strong enhancement of the 43-kDa band was observed in the presence of either P(i) + ouabain or vanadate, suggesting that the 43-kDa fragment is closely related to the conformation of the phosphorylated enzyme. These results indicate that Me(2)SO acts not only by promoting the release of water from the ATP site, but also by inducing a conformation closely related to the phosphorylated state, even when the enzyme is not phosphorylated.  相似文献   

6.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4 degrees C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na(+)/K(+)-ATPase and Mg(2+)-ATPase, retained 70-80% activity after the adsorption. In addition, adsorption stabilizes Na(+)/K(+)-ATPase and Mg(2+)-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na(+)/K(+)-ATPase and Mg(2+)-ATPase and their sensitivity to and mechanism of Cd(2+)- or Hg(2+)-induced inhibition. The only exception is the "high affinity" Mg(2+)-ATPase moiety, whose affinity for ATP and sensitivity toward Cd(2+) were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   

7.
Beetles infected with metacestodes of the rat tapeworm, Hymenolepis diminuta, exhibit reduced fecundity, due to alterations in vitellogenesis. Follicle cell patency is retarded and inefficient vitellogenin uptake ensues. Here, we have reassessed patency and its stimulation by JH III at day 3 post-infection, when the most detrimental changes are observed in other ovarian processes. In Rhodnius prolixus, patency is believed to be brought about by the action of a JH-dependent membrane-bound Na(+)/K(+) ATPase (EC 3.6.1.3); however, this had not been established in Tenebrio molitor. Therefore, the properties of the enzyme, with respect to optimal assay conditions and juvenile hormone dependency, are reported. Maximal stimulation occurred between 50 and 500 nM JH III, a range over which greatest increases in patency were also observed. In infected insects, a 35% reduction in Na(+)/K(+) ATPase activity was noted, but exposure to 50 nM JH III is sufficient for stimulation to a specific activity 89% that of JH-treated controls. In a similar fashion, patency in infected insects is reduced, but can be 'rescued' by 50 nM JH III. Moreover, in the absence of exogenous hormone, patency in infected beetles can be elevated to control levels after in vitro culture (6 h), with exchange of medium every 2 h. The possibility that such reversible decreases in enzyme activity and patency are caused by a JH binding inhibitor molecule is discussed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

8.
The insect oocyte sequesters nutritive proteins during patency, which is facilitated as a result of intercellular spaces occurring between follicular epithelial cells under the influence of juvenile hormone (JH). Patency was analyzed in the moth, Heliothis virescens, using a pharmacological approach, in which we used different JH homologues and chemicals that specifically target elements of two second-messenger pathways in vertebrates, the cAMP-dependent and inositol triphosphate/diacylglycerol signaling pathways. JH I and JH III evoked dose-dependent patency in H. virescens oocyte follicles, which was suppressed by the Na/K-ATPase inhibitor, ouabain. Patency was observed in follicular epithelial cells treated with either protein kinase C activator, PDBu, or protein kinase A activator, 8-Br-cAMP, by itself. The protein kinase C inhibitor, H-7, preferentially suppressed patency evoked by JH III, whereas the protein kinase A inhibitor, H89, preferentially suppressed that evoked by JH I. Additionally, patency was triggered by the adenylate cyclase activator, NKH 477, or peptide Gs-protein activator, cholera toxin, alone. Patency evoked by JH I was suppressed by the adenylate cyclase inhibitor, SQ 22,536, and GPAnt-2, a peptide antagonistic to Gs proteins that stimulates adenylate cyclase. Neither of these latter inhibitors, however, affected JH III-evoked patency. These results suggest that, in the process of patency in H. virescens ovarial follicles, JH I predominantly signals via the cAMP-dependent second messenger system, whereas JH III acts via the inositol triphosphate/diacylglycerol signaling pathway. Moreover, stimulation of patency by cholera toxin alone and inhibition of JH I-evoked patency by GPAnt-2, strongly suggest that JH I acts on the follicular epithelial cells via activation of G-protein, and-possibly-via G(s)-protein coupled receptor.  相似文献   

9.
The distribution of transmembrane proteins is considered to be crucial for their activities because these proteins mediate the information coming from outside of cells. A small GTPase Rho participates in many cellular functions through its downstream effectors. In this study, we examined the effects of RhoA on the distribution of Na(+),K(+)-ATPase, one of the transmembrane proteins. In polarized renal epithelium, Na(+),K(+)-ATPase is known to be localized at the basolateral membrane. By microinjection of the constitutively active mutant of RhoA (RhoA(Val14)) into cultured renal epithelial cells, Na(+),K(+)-ATPase was translocated to the spike-like protrusions over the apical surfaces. Microinjection of the constitutively active mutant of other Rho family GTPases, Rac1 or Cdcd42, did not induce the translocation. The translocation induced by RhoA(Val14) was inhibited by treatment with Y-27632, a Rho-kinase specific inhibitor, or by coinjection of the dominant negative mutant of Rho-kinase. These results indicate that Rho and Rho-kinase are involved in the regulation of the localization of Na(+),K(+)-ATPase. We also found that Na(+),K(+)-ATPase seemed to be colocalized with ERM proteins phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in cells microinjected with RhoA(Val14).  相似文献   

10.
In the gills of rainbow trout and Atlantic salmon, the alpha1a- and alpha1b-isoforms of Na,K-ATPase are expressed reciprocally during salt acclimation. The alpha1a-isoform is important for Na(+) uptake in freshwater, but the molecular basis for the functional differences between the two isoforms is not known. Here, three amino acid substitutions are identified in transmembrane segment 5 (TM5), TM8 and TM9 of the alpha1a-isoform compared to the alpha1b-isoform, and the functional consequences are examined by mutagenesis and molecular modeling on the crystal structures of Ca-ATPase or porcine kidney Na,K-ATPase. In TM5 of the alpha1a-isoform, a lysine substitution, Asn783 --> Lys, inserts the epsilon-amino group in cation site 1 in the E(1) form to reduce the Na(+)/ATP ratio. In the E(2) form the epsilon-amino group approaches cation site 2 to force ejection of Na(+) to the blood phase and to interfere with binding of K(+). In TM8, a Asp933 --> Val substitution further reduces K(+) binding, while a Glu961 --> Ser substitution in TM9 can prevent interaction of FXYD peptides with TM9 and alter Na(+) or K(+) affinities. Together, the three substitutions in the alpha1a-isoform of Na,K-ATPase act to promote binding of Na(+) over K(+) from the cytoplasm, to reduce the Na(+)/ATP ratio and the work done in one Na,K pump cycle of active Na(+) transport against the steep gradient from freshwater (10-100 microM: Na(+)) to blood (160 mM: Na(+)) and to inhibit binding of K(+) to allow Na(+)/H(+) rather than Na(+)/K(+) exchange.  相似文献   

11.
Na+,K(+)-ATPase is a ubiquitous plasmalemmal membrane protein essential for generation and maintenance of transmembrane Na+ and K+ gradients in virtually all animal cell types. Activity and polarized distribution of renal Na+,(+)-ATPase appears to depend on connection of ankyrin to the spectrin-based membrane cytoskeleton as well as on association with actin filaments. In a previous study we showed copurification and codistribution of renal Na+,K(+)-ATPase not only with ankyrin, spectrin and actin, but also with two further peripheral membrane proteins, pasin 1 and pasin 2. In this paper we show by sequence analysis through mass spectrometry as well as by immunoblotting that pasin 2 is identical to moesin, a member of the FERM (protein 4.1, ezrin, radixin, moesin) protein family, all members of which have been shown to serve as cytoskeletal adaptor molecules. Moreover, we show that recombinant full-length moesin as well as its FERM domain bind to Na+,K(+)-ATPase and that this binding can be inhibited by an antibody specific for the ATPase activity-containing cytoplasmic loop (domain 3) of the Na+,K(+)-ATPase alpha-subunit. This loop has been previously shown to be a site essential for ankyrin binding. These observations indicate that moesin might not only serve as direct linker molecule of Na+,K(+)-ATPase to actin filaments but also modify ankyrin binding at domain 3 of Na+,K(+)-ATPase in a way similar to protein 4.1 modifying the binding of ankyrin to the cytoplasmic domain of the erythrocyte anion exchanger (AE1).  相似文献   

12.
Na(+)/H(+) antiporters are ubiquitous membrane proteins and play an important role in cell homeostasis. We amplified a gene encoding a member of the monovalent cation:proton antiporter-2 (CPA2) family (TC 2.A.37) from the Thermus thermophilus genome and expressed it in Escherichia coli. The gene product was identified as a member of the NapA subfamily and was found to be an active Na(+)(Li(+))/H(+) antiporter as it conferred resistance to the Na(+) and Li(+) sensitive strain E. coli EP432 (DeltanhaA, DeltanhaB) upon exposure to high concentration of these salts in the growth medium. Fluorescence measurements using the pH sensitive dye 9-amino-6-chloro-2-methoxyacridine in everted membrane vesicles of complemented E. coli EP432 showed high Li(+)/H(+) exchange activity at pH 6, but marginal Na(+)/H(+) antiport activity. Towards more alkaline conditions, Na(+)/H(+) exchange activity increased to a relative maximum at pH 8, where by contrast the Li(+)/H(+) exchange activity reached its relative minimum. Substitution of conserved residues D156 and D157 (located in the putative transmembrane helix 6) with Ala resulted in the complete loss of Na(+)/H(+) activity. Mutation of K305 (putative transmembrane helix 10) to Ala resulted in a compromised phenotype characterized by an increase in apparent K(m) for Na(+) (36 vs. 7.6 mM for the wildtype) and Li(+) (17 vs. 0.22 mM), In summary, the Na(+)/H(+) antiport activity profile of the NapA type transporter of T. thermophilus resembles that of NhaA from E. coli, whereas in contrast to NhaA the T. thermophilus NapA antiporter is characterized by high Li(+)/H(+) antiport activity at acidic pH.  相似文献   

13.
In the mouse macrophage-like cell line RAW 264, vacuolar-type (H(+))-ATPase (V-ATPase) inhibitors, bafilomycin A(1) and concanamycin A, increased the level of cyclooxygenase (COX)-2 protein and its mRNA. The V-ATPase inhibitor-induced expression of COX-2 was suppressed by inhibitors of c-jun N-terminal kinase (JNK) and nuclear factor-kappaB, and by inhibitors of Na(+)/H(+) exchangers (NHEs). The bafilomycin A(1)-induced activation of JNK but not degradation of IkappaB-alpha was suppressed by NHE inhibitors and by an inhibitor of Na(+)/Ca(2+) exchanger SN-6. These results suggested that V-ATPase inhibitors induce the expression of COX-2 via NHE-dependent and -independent pathways.  相似文献   

14.
1α,25-Dihydroxyvitamin D(3) (1,25D(3)) is the active metabolite of vitamin D(3) and the major calcium regulatory hormone in tissues. The aim of this work was to investigate the mechanism of action of 1,25D(3) on (45)Ca(2+) uptake in Sertoli cells from 30-day-old rats. Results showed that 10(-9) and 10(-12) M 1,25D(3) increased the rate of (45)Ca(2+) uptake 5 and 15 min after hormone exposure and that 1α,25(OH)(2) lumisterol(3) (JN) produced a similar effect suggesting that 1,25D(3) action occurs via a putative membrane receptor. The involvement of voltage-dependent calcium channels (VDCC) in 1,25D(3) action was evidenced by using nifedipine, while the use of Bapta-AM demonstrated that intracellular calcium was not implicated. Moreover, the incubation with ouabain and digoxin increased the rate of (45)Ca(2+) uptake, indicating that the effect of 1,25D(3) may also result from Na(+)/K(+)-ATPase inhibition. In addition, we demonstrated that the mechanism underlying the hormone action involved extracellular signal-regulated kinase (ERK) and protein kinase C (PKC) activation in a phospholipase C-independent way. Furthermore, a local elevation of the level of cAMP, as demonstrated by incubating cells with dibutyryl cAMP or a phosphodiesterase inhibitor, produced an effect similar to that of 1,25D(3), and the inhibition of protein kinase A (PKA) nullified the hormone action. In conclusion, the stimulatory effect of 1,25D(3) on (45)Ca(2+) uptake in Sertoli cells occurs via VDCC, as well as PKA, PKC, and ERK activation. These protein kinases seem to act by inhibiting Na(+)/K(+)-ATPase or directly phosphorylating calcium channels. The Na(+)/K(+)-ATPase inhibition may result in Na(+)/Ca(2+) exchanger activation in reverse mode and consequently induce the uptake of calcium into the cells.  相似文献   

15.
The kinetic properties of a gill Na(+), K(+)-ATPase from the freshwater shrimp Macrobrachium olfersii were studied using p-nitrophenylphosphate (PNPP) as a substrate. Sucrose gradient centrifugation of the microsomal fraction revealed a single protein fraction that hydrolyzed PNPP. The Na(+), K(+)-ATPase hydrolyzed PNPP (K(+)-phosphatase activity) obeying Michaelis-Menten kinetics with K(M)=1.72+/-0.06 mmol l(-1) and V(max)=259.1+/-11.6 U mg(-1). ATP was a competitive inhibitor of K(+)-phosphatase activity with a K(i)=50.1+/-2.5 micromol l(-1). A cooperative effect for the stimulation of the enzyme by potassium (K(0.5)=3.62+/-0.18 mmol l(-1); n(H)=1.5) and magnesium ions (K(0.5)=0.61+/-0.02 mmol l(-1), n(H)=1.3) was found. Sodium ions had no effect on K(+)-phosphatase activity up to 1.0 mmol l(-1), but above 80 mmol l(-1) inhibited the original activity by approximately 75%. In the range of 0-10 mmol l(-1), sodium ions did not affect stimulation of the K(+)-phosphatase activity by potassium ions. Ouabain (K(i)=762.4+/-26.7 micromol l(-1)) and orthovanadate (K(i)=0.25+/-0.01 micromol l(-1)) completely inhibited the K(+)-phosphatase activity, while thapsigargin, oligomycin, sodium azide and bafilomycin were without effect. These data demonstrate that the activity measured corresponds to that of the K(+)-phosphatase activity of the Na(+), K(+)-ATPase alone and suggest that the use of PNPP as a substrate to characterize K(+)-phosphatase activity may be a useful technique in comparative osmoregulatory studies of Na(+), K(+)-ATPase activities in crustacean gill tissues, and for consistent comparisons with well known mechanistic properties of the vertebrate enzyme.  相似文献   

16.
We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)-mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(-)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(-) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(-) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363-379) cannot explain alone higher RSD. The exposure with SR Ca(2+) channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(-) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(-) as compared to SolD(+) myotubes during a high K(+) stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171-182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling.  相似文献   

17.
Although metabolic rate is considered to be useful as a general indicator of the biological effects of exposure to metals, it is seldom measured in conjunction with specific physiological, biochemical or cellular parameters. The purpose of this investigation was to examine the influence of cadmium (Cd) exposure on metabolic rate and gill Na(+)/K(+) ATPase activity in golden shiners (Notemigonus crysoleucas). Shiners were exposed to six levels of Cd (ranging from control to the maximum sublethal concentration) for 24- and 96-h periods. After 24-h, metabolic rate and Na(+)/K(+) ATPase activity of individual fish were strongly correlated. Shiners exposed to the four highest Cd concentrations (500, 800, 1100, and 1400 μg L(-1)) for 24-h exhibited a shock response that was characterized by mean values for metabolic rate and Na(+)/K(+) ATPase activity that were significantly lower compared to the control. Although results for 96-h exposures reflect a repair/recovery phase, there was no significant correlation between metabolic rate and Na(+)/K(+) ATPase activity. Metabolic rate of shiners was significantly elevated (65-100%) at all concentrations compared to the control after 96-h, whereas Na(+)/K(+) ATPase activity did not differ from the control. Elevated metabolic rate after 96-h likely reflects the influence of a variety of energetically demanding processes associated with repair and recovery.  相似文献   

18.
It has been well established that phosphorylation is an important reaction for the regulation of protein functions. In the N-terminal domain of the alpha-chain of pig gastric H(+)/K(+)-ATPase, reversible sequential phosphorylation occurs at Tyr 10 and Tyr 7. In this study, we determined the structure of the peptide involving the residues from Gly 2 to Gly 34 of pig gastric H(+)/K(+)-ATPase and investigated the tyrosine phosphorylation-induced conformational change using CD and NMR experiments. The solution structure showed that the N-terminal fragment has a helical conformation, and the peptide adopted two alpha-helices in 50% trifluoroethanol (TFE) solvent, suggesting that the peptide has a high helical propensity under hydrophobic conditions. Furthermore, the CD and NMR data suggested that the structure of the N-terminal fragment becomes more disordered as a result of phosphorylation of Tyr 10. This conformational change induced by the phosphorylation of Tyr 10 might be an advantageous reaction for sequential phosphorylation and may be important for regulating the function of H(+)/K(+)-ATPase.  相似文献   

19.
Hu XF  Chen KY  Xia R  Xu YH  Sun JL  Hu J  Zhu PH 《Biochemistry》2003,42(18):5515-5521
Ryanodine receptors (RyRs) of skeletal muscle, as calcium release channels, have been found to form semicrystalline arrays in the membrane of sarcoplasmic reticulum. Recently, both experimental observations and theoretical simulations suggested cooperative coupling within interlocking RyRs. To better understand the interactions between RyRs and their modulation, the aggregation and dissociation of isolated RyRs in aqueous medium containing various Na(+) and K(+) concentrations were investigated using photon correlation spectroscopy (PCS) and atomic force microscopy (AFM). RyRs aggregated readily at low salt concentrations. However, a different behavior was observed in the presence of Na(+) or K(+). Detectable aggregates were formed in 5 microg/mL RyR sample when the concentration of Na(+) and K(+) was reduced from 1 M to below 0.28 and 0.23 M, respectively. The dissociation of RyR aggregates was also examined when raising the salt concentration. While aggregates formed in 0.15 M NaCl medium could reverse almost completely, those formed in 0.15 M KCl medium only dissolved partly. When keeping the total salt concentration at 0.15 M, the aggregation and dissociation of RyRs were seen to evidently depend on the relative concentration of Na(+) and K(+). The interaction between RyRs was strengthened with increasing Na(+)/K(+) ratios in the mixed medium. Accompanying this, a decrease of [(3)H]ryanodine binding occurred. The results obtained with PCS and AFM provide further evidence for the interaction between RyRs and suggest the importance of Na(+), K(+), and their relative composition in modulating the interaction and cooperation between RyRs in vivo.  相似文献   

20.
The aqueous extract of Casearia sylvestris was tested in cortical membrane preparations. C. sylvestris was obtained commercially from two different sources, designated as Sample A and Sample B. The enzymes studied in this work were NTPDase-like, 5'-Nucleotidase, Na(+)/K(+)-ATPase and acetylcholinesterase (AChE). Adult rats received aqueous extracts from C. sylvestris in a dose of 20mg/kg body wt. daily for a 75-day-period, by oral administration (gavage). Our study showed that this treatment caused an inhibition of NTPDase-like activity with both, ATP (19.41% with Sample A and 25.03% with Sample B) and ADP (41.57% with Sample A and 31.20% with Sample B) as substrates. This treatment also caused an inhibition of 5'-nucleotidase activity (28.34% with Sample A and 31.46% with Sample B) and Na(+)/K(+)-ATPase (25.08% with Sample A and 24.81% with Sample B). The rate of acetylcholine degradation was reduced, as shown by the inhibition of AChE (31.65% and 26.74%, Samples A and B, respectively). These results suggest that extracts of C. sylvestris can cause neurochemical alterations in the purinergic and cholinergic systems of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号