共查询到20条相似文献,搜索用时 46 毫秒
1.
采用群落生态学的方法研究了澳门九澳山海滨经人工抚育后恢复的植物群落特征。通过对其群落种类组成及多样性、空间结构和优势种年龄结构分析表明:1200 m2样地内共有维管束植物44科76属82种;藤本及中、小、矮高位芽植物占优势(86.59%),而大高位芽植物缺乏;群落优势种为豺皮樟(Litsea rotundifolia var.oblongifoli)、亮叶柃(Eurya nitida)、鸭脚木(Schefflera heptaphylla)和假苹婆(Sterculia lanceolata),均为增长型种群;九澳山海滨经人工抚育后恢复的植物群落植株高度较低。九澳山海滨土壤为赤红壤,其植被恢复策略可为赤红壤海滨的植被生态恢复提供参考。为促进海滨地带性植被的建设,我们还选择出海滨适生乡土树种29种,构建了多层次多树种的空间结构,并建议在九澳山海滨现有植被群落的基础上适当引种乔木树种、增加草本层植物种类。 相似文献
2.
近几十年来,全球气候普遍变暖.那么,荒漠地区的气候是不是响应了全球气候的这种变化?在全球气候变化过程中,荒漠区植物物候又是如何响应这种气候变化的呢?显然,研究荒漠地区植物物候对气候变化的响应对于深入研究荒漠植物物候与气候因子的关系以及荒漠地区的植物保护都具有重要意义.运用位于中国西北典型荒漠地区的民勤沙生植物园1974~2007年42种中生、旱生植物的物候观测资料进行分析.结果表明:研究区1974年以来气温抬升幅度大于其他文献的研究报道,春季物候期提前幅度明显大于其他国家文献报道;在气温变暖的过程中,不同月份的气温变化与年平均气温的变化趋势并不完全对应,物候期发生当月的平均气温对该物候期的影响>物候期发生上月平均气温>年平均气温;研究区位于中国典型荒漠化地区,属于干旱荒漠气候,春季气温升高较其他地区更加明显,这就是当地春季物候期提前幅度相对较大的原因所在,也是当地以及中国西北沙区近几十年来沙尘暴天气增多和沙尘暴发生日期提前的原因.植物物候变化既是植物对气候变化的综合反应过程,又是植物适应气候变化的过程,尤其是荒漠植物.因此,物候研究将会成为今后气候学和植物生态学研究的一个重要内容. 相似文献
3.
植物物候及其变化是多个环境因子综合影响的结果,其中气候是最重要、最活跃的环境因子。主要从气候环境角度分析了植物物候与气候以及气候变化间的相互关系,概述了国内外有关植物物候及物候模拟等方面的研究进展。表明,温度是影响物候变化最重要的因子;同时,水分成为胁迫因子时对物候的影响也十分重要。近50a左右,世界范围内的植物物候呈现出了春季物候提前,秋季物候推迟或略有推迟的特征,从而导致了多数植物生长季节的延长,并成为全球物候变化的趋势。全球气候变暖改变了植物开始和结束生长的日期,其中冬季、春季气温的升高使植物的春季物候提前是植物生长季延长的主要原因。目前对物候学的研究方向主要集中在探讨物候与气候变化之间的关系,而模型模拟是定量研究气候变化与植物物候之间关系的重要方式,国内外已经开发出多种物候模型来分析气候驱动与物候响应之间的因果关系。另外遥感资料的应用也为物候模型研究提供了新的方向。物候机理研究、物候与气候关系以及物候模型研究将是研究的重点。 相似文献
4.
叶变色盛期是植物生长季结束时的重要物候指标。为探究澳门地区气候因子对植物叶变色盛期的影响,利用3个固定物候监测样地2012-2018年的物候资料和气象数据,对5种野生植物叶变色盛期的年际变化及其对前期各种气候因子的响应进行了研究。结果表明,不同物种叶变色盛期不同,集中在12月的有山乌桕(Sapium discolor)、野漆(Toxicodendron succedaneum)和天料木(Homalium cochinchinenense),假苹婆(Sterculia lanceolata)的叶变色盛期在5月,秤星树(Ilex asprella)集中在1月。不同样地共有种叶变色盛期不同,大潭山样地秤星树的叶变色盛期显著早于九澳山样地,松山样地假苹婆的叶变色盛期显著早于大潭山样地。叶变色盛期与春夏季温度的变化呈正相关,与秋冬季的呈负相关。叶变色盛期与冬、春季降水量的变化呈正相关,与夏、秋季的呈负相关。相对湿度与植物的叶变色盛期亦有显著相关性。温度是影响这5种植物叶变色盛期最主要的气候因子。 相似文献
5.
物候是气候变化的指示者,由于不同地区植被类型不同,导致其对气候波动的响应方式不同。利用2004—2013年内蒙古草原区生态监测站群落优势种物候观测资料和同时段的气象资料,分析了不同草原类型区优势种物候期变化及其与气候因子间的相互关系,结果表明:(1)2004—2013年内蒙古草原区各时段气候波动趋势均不显著,返青前以气温降低、降水增加趋势为主;黄枯前草甸草原、典型草原以气温降低、降水增加趋势为主,荒漠草原变化趋势相反。(2)2004—2013年典型草原植物返青期平均提前4.01 d,黄枯推后10.35 d,生长季延长14.36 d;草甸草原返青期提前2.04 d,黄枯期推后12.68 d,生长季延长14.72 d;荒漠草原物候变化趋势最小,返青期平均提前了1.32 d,黄枯期平均推后了9.58 d,生长季延长了10.90 d。(3)内蒙古草原区植物返青期主要受气温波动的影响,草甸草原返青期与前3个月平均气温的负相关最为显著,气温每升高1℃,返青期约提前1.123 d;典型草原、荒漠草原返青期与前2个月平均气温的负相关最为显著气,气温每升高1℃,返青期约提前1.137 d和1.743 d。(4)典型草原区植物黄枯期受前1—2月平均气温和累积降水的共同影响,与夏季平均气温和当月降水量的相关最为显著,夏季气温每升高1℃,黄枯期约提前2.250 d,当月降水每增加1 mm,黄枯期约推后0.119 d。草甸草原、荒漠草原植物黄枯期与各时段降水、气温的相关均不显著,影响黄枯机制比较复杂。 相似文献
6.
在全球气候变化背景下, 极端气候事件频发。中国西南部地区植被对于气候变化及极端气候事件的响应较为敏感。为探究西南部地区植被对极端气候事件的响应程度, 该文采用Pettitt检验、趋势分析法对数据进行分析, 并对数据进行去趋势处理, 分析去趋势前后极端气候指数与归一化植被指数(NDVI)的相关关系。结果表明: (1) 1982-2015年西南部地区植被NDVI呈现显著上升的趋势, NDVI在1994年发生突变, 突变前上升不显著, 突变后呈现显著上升的趋势; (2)去趋势前, 1982-2015年间, 极端降水指数与NDVI显著相关的仅有1日最大降水量, 其与NDVI显著正相关; 除气温日较差外, 其他极端温度指数均与NDVI显著相关。1994-2015年间, 1日最大降水量与NDVI显著正相关, 降水日数与NDVI显著负相关; 在极端温度指数中, 日最低气温最大值、暖昼日数、夏季日数、生长季长度和气温日较差与NDVI显著正相关, 冷昼日数、冰冻日数、冷夜日数和霜冻日数与NDVI显著负相关。1982-2015年间NDVI对年平均气温的响应最强, 而在1994-2015年间NDVI对夏季日数和气温日较差的响应强于对年平均气温的响应。(3)去趋势后, 极端降水指数与NDVI的相关性在两个时段都不显著; 而日最高气温最大值、暖昼日数、夏季日数和气温日较差在这两个时段与NDVI显著正相关, 但其与NDVI的相关系数都在1994-2015年间更高。气温日较差在两个时段与NDVI的相关系数都最高。只在1982-2015年冷昼日数与NDVI显著负相关。 相似文献
7.
8.
气温被普遍认为是春季物候期最主要的控制因子之一, 然而低温对植物物候的影响效应一直都存在不同的观点。西双版纳由于地处热带地区的北缘, 其气温相对于赤道附近的热带地区较低。自1959年以来, 西双版纳热带植物园引入了来自世界各个热带地区的4万余种植物进行保护, 之前的研究证明西双版纳的低温对这些引种植物的生长有很大影响。因此,1974年西双版纳出现的极端低温势必对引种植物造成极大威胁, 同时也是对这些植物低温适应能力的一个考验。通过对比43种引种植物物候期(生长抽梢期与开花期)在1974年与常年的差异情况, 分析不同来源(热带亚洲、热带美洲与热带非洲)引种植物对西双版纳低温的适应性。结果表明, 经历西双版纳1974年初的极端低温之后, 使81%的引种植物生长抽梢期提前, 同时也造成35%的引种植物在该年没有开花; 而植物生长抽梢提前的主要原因则是极端低温以及低温过后气温迅速回升。引种植物均能顺利度过1974年的最冷时期, 并出现生长抽梢物候, 这意味着引种植物在经历极端低温之后都能够进行正常的生长活动, 但极端低温对引种植物繁殖活动的不利影响大于其对生长活动的影响; 引种植物对西双版纳极端低温的适应能力由大到小顺序依次为: 亚洲来源植物>美洲来源植物>非洲来源植物。因此在迁地保护植物的选择过程中, 应多选择亚洲热带植物, 其次为美洲热带植物, 而对非洲热带植物的引入则需谨慎考察。 相似文献
9.
内蒙古典型草本植物春季物候变化及其对气候变暖的响应 总被引:12,自引:0,他引:12
为了解气候和物候变化规律,指导农业生产和环境监测,用线性倾向估计法分析了1982—2006年内蒙古地区草本植物春季物候及其前期温度的变化趋势,并分区域分析了植物春季物候与温度的关系,通过逐步回归分别建立了中西部和东部地区植物始花期的温度回归模型,通过模型对未来气候变化情景下内蒙古地区草本植物始花期变化进行了预估。结果表明:20世纪80年代以来植物始花期变化为提前趋势,温度变化为增温趋势,春季变暖比冬季明显;温度和始花期的变化趋势均有明显的地域特征,中西部地区增温趋势和植物始花期提前剪势均大于东部地区,春季温度和植物始花期在两区域平均变化趋势均显著,冬季温度在中西部地区变化显著,而在东部地区变化不显著;植物始花期与其前期温度呈明显的负相关,春季温度是影响开花的主要因子,未来如温度上升1 ℃,始花期提早3.1~5.0 d。 相似文献
10.
城市热岛引起的局地小气候改变对生态系统格局、过程及功能的影响加剧。植物物候是检测这种影响的敏感且易观测的生物指示器,其对城市热岛的响应研究成为城市生态学及全球变化科学关注的热点。本文系统综述近年来相关研究成果,指出物候地面观测、模型模拟及遥感监测是获取城市植物物候的主要途径,联合公众并充分结合照片、多分辨率影像等可丰富物候资料获取;由于城市热岛的影响,城市春季物候早于周围乡村地区,但对于驱动机制仍没有定论;随着城市增温,城市春季物候提前,秋季物候延后,但如何定量区分致使城市增温的热岛效应与气候增暖的影响成为难点;同时,植物功能型、外来种等生物因素及地理区位因素对植物物候响应产生影响。为此,提出未来应抽丝剥茧去除干扰因素,加强植物物候响应机理的研究。 相似文献
11.
Six phenological series were available for ‘Golden Delicious’ apple blooming at six sites in Trentino, an alpine fruit-growing region. Several models were tested to predict flowering dates, all involving a “chilling and forcing” approach. In many cases, application of the models to different climatic conditions results in low accuracy of prediction of flowering date. The aim of this work is to develop a model with more general validity, starting from the six available series, and to test it against five other phenological series outside the original area of model development. A modified version of the “Utah” model was the approach that performed best. In fact, an algorithm using “chill units” for rest completion and a thermal sum for growing-degree-hours (GDH), whose efficiency changes over time depending on the fraction of forcing attained, yielded a very good prediction of flowering. Results were good even if hourly temperatures were reconstructed from daily minimum and maximum values. Errors resulting from prediction of flowering data were relatively small, and root mean square errors were in the range of 1–6 days, being <2 days for the longest phenological series. In the most general form of the model, the summation of GDH required for flowering is not a fixed value, but a function of topoclimatic variables for a particular site: slope, aspect and spring mean temperature. This approach allows extension of application of the model to sites with different climatic features outside the test area. 相似文献
12.
Leiothrix curvifolia var. lanuginosa and Leiothrix crassifolia are endemic and sympatric species in the Brazilian rupestrian grasslands, a habitat that has a predominance of sandy and shallow soils with low water retention. Based on the premise that soil moisture is one of the abiotic factors that affects most reproduction in plants, we hypothesized that the flowering phenology events and establishment of sexual and vegetative offspring would occur in the periods of higher soil water availability. We marked 478 ramets distributed among 100 genets of L. curvifolia var. lanuginosa and 693 ramets distributed among 100 genets of L. crassifolia, so that they could be observed monthly along the two rainy seasons from December 2003 to 2004. Both species showed phenological synchrony in the flower heads and seedlings production with soil moisture availability. Seedling mortality was intense in the dry period. Unlike the seedlings, the ramets survived was 100%. The greater capacity of ramets to survive can result from a much greater biomass compared with seedlings, and ramets become adult much faster. We conclude that for a successful seedling establishment, the synchronization with the rainy season was required, and moreover, that repeated seedling recruitment can be important for the maintenance of local populations of these species which suffer from high seedling mortality in the drought period. It is likely that the coincidence of the rainy period with seedling establishment is an important factor that determines the flowering phenological pattern of L. curvifolia var. lanuginosa and L. crassifolia in rupestrian grasslands. 相似文献
13.
Peak flowering by the total flora of Africa coincides with or immediately follows peak rainfall. Flowering intensity of the total flora decreases with distance from the equator, but that of the honeybee plant resource base (±2% of total flora) does not. Flowering in the latter is highly synchronous (months 1–5 north of and 9–11 south of the equator). Both total and honeybee flora are completely incongruent with either the biomes or phytochoria of Africa. There is no significant correspondence between honeybee phenology and the total flora but significant correspondence occurs between honeybees and flowering in honeybee plant genera. A logistic regression model reveals that honeybee plant flowering predicts major honeybee colony events with a probability of 0.81 south of the equator and 0.71 for the whole continent. It is postulated that promiscuity in the bee plant genera and honeybees of Africa have contributed to their continental ubiquity. 相似文献
14.
Dimitrios Voliotis 《Plant Ecology》1984,56(3):129-137
The flowering period and flower colour spectrum of 170 aromatic plant species are studied in 18 representative regions in Greece. The duration of the early to late flowering of the species is recorded for each region and for Greece as a whole. The basic flower colours (green, yellow, red and violet) are defined and the colour spectra for each region and for the whole country are given by converting absolute to relative values. The Sørensen similarity coefficient is applied to compare regions and the relationship among them as well as with a control region (Athos peninsula). Conclusions are drawn as to the time of maximum flowering and the decrease in the proportion of flowering species from north to south. In addition, interpretations are given for the symmetrical flowering curve of Greece as a whole, compared to the skewed curves of the islands.Nomenclature follows T. G. Tutin et al. (eds.) 1964–1980. Flora Europaea 1-5, Cambridge. 相似文献
15.
几个气候区木本植物的开花结果物候 总被引:10,自引:0,他引:10
分析了我国海南和广东、秦岭、东北等不同森林气候区木本植物开花、结果物候以及果实和种子大小分布的规律。三个区系的开花、结果物候和种子、果实大小分布,都有类似的格局。但随着纬度的升高,一年中植物开花和结果的时间更加集中,海南和广东整年都有木本植物开花,秦岭有10个月左右,而东北仅有7个月。并且随着纬度升高,开花高峰的时间较迟,而结果高峰的时间较早。在海南和广东,热带区系成分和温带区系成分的木本植物,一年中开花和结果物候格局是很一致的。三个区系木本植物的果实和种子大小分布的格局也是很相似的,但海南和广东植物果实和种子大小范围较大,较多样,随着纬度升高,果实和种子大小范围变小,较单调。三个区系木本植物最小的果实的大小都差不多,为0.1cm,但最小的种子的大小却很不相同,随着纬度的升高而增大,开花和结果物候与月均气温及降水量的相关性因不同的区系而不同.鼎湖山常见木本植物果熟期和气候因子的相关性比结果期更显著。 相似文献
16.
Summary We investigated inter-specific variation in fruit characteristics — fruit size, seed number per fruit, seed weight, nutritional content, fruit persistence, and fruit synchronization — in relation to flowering and fruiting phenology in 34 species of fleshy fruited plants. Except for aspects of fruit synchrony and persistence, the results in general were inconsistent with previous suggestions about adaptive variation in phenologically related fruit traits. The main results were as follows: (1) Late flowering, late fruiting, lengthy development time from flower to fruit, and highly persistent fruits constitute a complex of correlated characteristics among the species. (2) Synchronization of fruiting within individuals increased from early ripening fruits to late ripening fruits. Fruiting synchrony was more pronounced in species with a small crop size than in species with a large fruit crop, whereas synchrony was not significantly related to flowering synchronization, nor to life form. (3) Nitrogen and carbohydrate content of fruit pulp did not vary in relation to phenology, whereas lipid content decreased from early to late ripening fruits. (4) No seasonal trends were found for variation in seed size or seed number per fruit. (5) Interactions with flowering phenology and developmental constraints are important in phenological fruiting patterns. Temporal variation in start of fruiting was partly (36%) explained by variation in flowering time. Seed weight variation explained 17% of variation in development time from flower to fruit. (6) Despite constraints from flowering and seed development, some adaptive adjustment in fruiting phenology is likely to be allowed for among the investigated species. Such an adaptive variation in fruiting phenology was suggested by intra-generic comparisons of Prunus and Vaccinium species. 相似文献
17.
18.
Global warming has caused shifts in the flowering time of many plant species. In alpine regions the temperature rise has been especially pronounced and together with decreasing winter precipitation has led to earlier snowmelt. The close association between time of snowmelt and plant growth at high elevations makes climate change for alpine plants particularly threatening. Here we transplanted eleven congeneric pairs of high- and low-elevation herbaceous species to common gardens differing c. 800 m in elevation, and c. 4 °C in mean growing season temperature to test whether reproductive phenologies of high- and low-elevation plants differ in their respective responses to temperature. Results indicate that high-elevation plants were less plastic in response to transplantation than their low-elevation congeners as the onsets of phenophases on average shifted 7 days less than in low-elevation plants. Plasticity of phenophase durations was overall weaker than that of phenophase onsets, and slightly stronger in high-elevation species compared to low-elevation congeners. We suggest that weaker plasticity in the onsets of early stages of reproductive phenology of high-elevation plants is related to spring frost, which constitutes a strong selective agent against early loss of winter hardiness. Some of the plastic responses of both low- and high-elevation species might potentially be adaptive under predicted climate change. However, the observed plasticity can be largely explained as a passive response to temperature and not as the result of natural selection in heterogeneous environments. The strong temperature-sensitivity of low-elevation species might promote their upward range expansion, but only to a certain threshold after which it becomes limited by the short growing season. 相似文献
19.
We studied the possibility of integrating flowering dates in phenology and pollen counts in aerobiology in Germany. Data were analyzed for three pollen types (Betula, Poaceae, Artemisia) at 51 stations with pollen traps, and corresponding phenological flowering dates for 400 adjacent stations (< 25 km) for the years 1992–1993 and 1997–1999. The spatial and temporal coherence of these data sets was investigated by comparing start and peak of the pollen season with local minima and means of plant flowering. Our study revealed that start of birch pollen season occurred on average 5.7 days earlier than local birch flowering. For mugwort and grass, the pollen season started on average after local flowering was observed; mugwort pollen was found 4.8 days later and grass pollen season started almost on the same day (0.6 days later) as local flowering. Whereas the peak of the birch pollen season coincided with the mean flowering dates (0.4 days later), the pollen peaks of the other two species took place much later. On average, the peak of mugwort pollen occurred 15.4 days later than mean local flowering, the peak of grass pollen catches followed 22.6 days after local flowering. The study revealed a great temporal divergence between pollen and flowering dates with an irregular spatial pattern across Germany. Not all pollen catches could be explained by local vegetation flowering. Possible reasons include long-distance transport, pollen contributions of other than phenologically observed species and methodological constraints. The results suggest that further research is needed before using flowering dates in phenology to extrapolate pollen counts. 相似文献
20.
Timing of reproduction in a prairie legume: seasonal impacts of insects consuming flowers and seeds 总被引:2,自引:0,他引:2
Summary Seasonal patterns of insect damage to reproductive tissue of the legume Baptisia australis were studied for three years in native tallgrass priairie. Contrasting seasonal patterns of damage were associated with the major species of insect consumers. The moth Grapholitha tristegana (Olethreutidae) and the weevil Tychius sordidus (Curculionidae), which together infested 80–100% of developing fruits (pods), consistently damaged more seeds on average in early than in late maturing pods. But while late opening flowers were less subject to attack from moths and weevils, they were more subject to attack from chewing insects, particularly blister beetles (Epicauta fabricii, Meloidae), which destroyed >80% of all flowers and developing young pods (including moth and weevil larval inhabitants). The blister beetles arrived late in the flowering season and fed particularly on young reproductive tissue, allowing larger, older pods that had developed from early opening flowers to escape destruction. The relative abundances and impacts of blister beetles, moths, and weevils varied from year to year. Adding to the uncertainty of reproductive success of the host plant were the large and variable amounts of damage to immature buds inflicted by insects (including the blister beetles and weevil adults) and late killing frosts. Thus, timing of flowering is critical to success in seed production for B. australis. The heavy impacts of insects and weather can result in a very narrow window in time (which shifts from year to year) during which B. australis can flower with any success. The opposing pressures exerted by insects and weather on floral reproductive success may act in concert with other features of the plant's biology to foster the maintenance of considerable diversity in flowering times among individuals in local populations of B. australis. 相似文献