首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

Background

Ligia isopods are widely distributed in the Pacific rocky intertidal shores from central California to central Mexico, including the Gulf of California. Yet, their biological characteristics restrict them to complete their life cycles in a very narrow range of the rocky intertidal supralittoral. Herein, we examine phylogeographic patterns of Ligia isopods from 122 localities between central California and central Mexico. We expect to find high levels of allopatric diversity. In addition, we expect the phylogeographic patterns to show signatures of past vicariant events that occurred in this geologically dynamic region.

Methodology/Principal Findings

We sequenced two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA). We conducted Maximum Likelihood and Bayesian phylogenetic analyses. We found many divergent clades that, in general, group according to geography. Some of the most striking features of the Ligia phylogeographic pattern include: (1) deep mid-peninsular phylogeographic breaks on the Pacific and Gulf sides of Baja peninsula; (2) within the Gulf lineages, the northern peninsula is most closely related to the northern mainland, while the southern peninsula is most closely related to the central-southern mainland; and, (3) the southernmost portion of the peninsula (Cape Region) is most closely related to the southernmost portion of mainland.

Conclusions/Significance

Our results shed light on the phylogenetic relationships of Ligia populations in the study area. This study probably represents the finest-scale phylogeographic examination for any organism to date in this region. Presence of highly divergent lineages suggests multiple Ligia species exist in this region. The phylogeographic patterns of Ligia in the Gulf of California and Baja peninsula are incongruent with a widely accepted vicariant scenario among phylogeographers, but consistent with aspects of alternative geological hypotheses and phylo- and biogeographic patterns of several other taxa. Our findings contribute to the ongoing debate regarding the geological origin of this important biogeographic region.  相似文献   

2.

Aim

Climatic oscillations have been suggested to promote speciation and changes in species distributions, mostly in connection with the Last Glacial Maximum (LGM). However, the LGM is just the most recent of the 20+ glacial‐interglacial periods that characterise the Quaternary. Here, we investigate the role of climatic changes and geomorphological features in shaping the evolution, distribution and population dynamics of the South American cactus Cereus hildmannianus.

Location

South‐eastern South America.

Methods

We built a large fossil‐calibrated phylogeny for cacti (family Cactaceae), comprising 128 species distributed in all subfamilies, using a Bayesian relaxed clock. We used the results to derive a secondary calibration for a population‐level phylogeny in C. hildmannianus. We amplified two plastid (trnQ‐5′rps16 and psbJ‐petA) and one nuclear marker (PhyC) for 24 populations. We estimated population dynamics, ancestral areas, and species distribution models to infer the clade's evolutionary history in time and space.

Results

Our results show a major population divergence of C. hildmannianus at c. 2.60 Ma, which is strikingly coincident with the transition of the Pliocene–Pleistocene and onset of Quaternary glaciations. This was followed by a complex phylogeographic scenario involving population expansions across ecologically diverse regions.

Main conclusions

Contrary to the dominant research focus on the LGM, our study indicates a major impact of the first Quaternary glaciation on the distribution and population divergence of a South American plant species. Further intraspecific events seem related to successive climatic changes and geomorphology, including the development of the coastal plain and its peculiar diversity. We propose that the first Quaternary glaciation acted as a major evolutionary bottleneck, whereby many warm‐adapted lineages succumbed, while those that survived could diversify and better cope with subsequent climatic oscillations.  相似文献   

3.
Recent phylogeographic studies of animal taxa in California have revealed common geographic patterns of evolutionary divergence and genetic diversity that are generally attributable to landscape influences. However, there remains a paucity of knowledge on the evolution of freshwater taxa in southern California. Here, we investigate phylogeographic patterns in a stream-dwelling frog (Pseudacris cadaverina). Two hundred and twenty-one individuals were collected from 46 populations across the species’ range in southern California. Using 1100 bp of sequence data from cytochrome b and tRNA-Glu, we conducted phylogenetic analyses, analysis of molecular variance, and nested clade phylogeographic analysis to gain insight into the factors contributing to the distribution of genetic diversity in P. cadaverina. We tested for evidence of two putative phylogeographic breaks and tested hypotheses that genetic diversity in this species is partitioned into (1) major watersheds, (2) mountain ranges, and (3) coastal and desert regions. Our results suggest that the eastern Transverse Ranges are the center of origin for extant P. cadaverina lineages and that the observed genetic structure in this species was established during the Pleistocene Epoch. There is strong support for three major haplotype groups and a Transverse Range break in P. cadaverina that is concordant with breaks found in numerous other taxa. The distribution of genetic diversity in P. cadaverina is due in large part to the separation of populations into different major watersheds and mountain ranges. Gene flow appears to be generally limited among disjunct populations throughout the region and some desert populations have been isolated by historical habitat fragmentation.  相似文献   

4.
The repeated formation and loss of land‐bridges during the Pleistocene have had lasting impacts on population genetic structure. In the tropics, where island populations persisted through multiple glacial cycles, alternating periods of isolation and contact are expected to have driven population and taxonomic divergence. Here, we combine mitochondrial and nuclear sequence data with microsatellites to dissect the impact of Pleistocene climate change on intra‐specific diversification in the horseshoe bat Rhinolophus affinis. This taxon shows considerable morphological and acoustic variation: two parapatric subspecies (himalayanus and macrurus) occur on mainland China and a third (hainanus) on Hainan Island. Our phylogeographic reconstruction and coalescent analyses suggest the island subspecies formed from an ancestral population of himalayanus via two colonization events c. 800 000 years before present. R. a. hainanus then recolonized the mainland, forming macrurus and thus a secondary contact zone with himalayanus. Finally, macrurus recolonized Hainan following the LGM. We found that all three biological events corresponded to known periods of land‐bridge formation. Evidence of introgression was detected between macrurus and both its sister taxa, with geographical proximity rather than length of separation appearing to be the biggest determinant of subsequent genetic exchange. Our study highlights the important role of climate‐mediated sea level changes have had in shaping current processes and patterns of population structure and taxonomic diversification.  相似文献   

5.
Endangered Sonoran (Antilocapra americana sonoriensis) and Peninsular (A. a. peninsularis) pronghorn persist largely because of captive breeding and reintroduction efforts. Recovery team managers want to re-establish pronghorn in their native range, but there is currently uncertainty regarding the subspecies status of extinct pronghorn populations that historically inhabited southern California, USA, and northern Baja California, Mexico. To address this uncertainty, we genotyped museum specimens and conducted phylogenetic and population genetic analyses of historical data in the context of 3 contemporary pronghorn populations. The historical northern Baja California pronghorn share the most ancestry with contemporary Peninsular pronghorn, whereas pronghorn in southern California share more ancestry with contemporary American (A. a. americana) pronghorn. For reintroductions into northern Baja California, the Peninsular subspecies is more appropriate based on museum genetic data. For reintroductions into Southern California, ecological and genetic factors are both important, as the subspecies most genetically related to historical populations (American) may not be well-adapted to the hot, low-elevation deserts of the reintroduction area. © 2019 The Wildlife Society.  相似文献   

6.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

7.
In hybrid zones in which two divergent taxa come into secondary contact and interbreed, selection can maintain phenotypic diversity despite widespread genetic introgression. Red‐breasted (Sphyrapicus ruber) and red‐naped (S. nuchalis) sapsuckers meet and hybridize along a narrow contact zone that stretches from northern California to southern British Columbia. We found strong evidence for changes in the structure of this hybrid zone across time, with significant temporal shifts in allele frequencies and in the proportions of parental phenotypes across the landscape. In addition to these shifts, we found that differences in plumage predict genetic differences (R2 = 0.80), suggesting that plumage is a useful proxy for assessing ancestry. We also found a significant bimodal distribution of hybrids across the contact zone, suggesting that premating barriers may be driving reproductive isolation, perhaps as a result of assortative mating based on plumage differences. However, despite evidence of selection and strong patterns of population structure between parental samples, we found only weak patterns of genetic divergence. Using museum specimens and genomic data, this study of sapsuckers provides insight into the ways in which phenotypic and genetic structure have changed over a 40‐year period, as well as insight into the mechanisms that may contribute to the maintenance of the hybrid zone over time.  相似文献   

8.
B Wang  J Jiang  F Xie  C Li 《PloS one》2012,7(7):e41579

Background

The influence of Pleistocene climatic fluctuations on intraspecific diversification in the Qinling–Daba Mountains of East Asia remains poorly investigated. We tested hypotheses concerning refugia during the last glacial maximum (LGM) in this region by examining the phylogeography of the swelled vent frog (Feirana quadranus; Dicroglossidae, Anura, Amphibia).

Methodology/Principal Findings

We obtained complete mitochondrial ND2 gene sequences of 224 individuals from 34 populations of Feirana quadranus for phylogeographic analyses. Additionally, we obtained nuclear tyrosinase gene sequences of 68 F. quadranus, one F. kangxianensis and three F. taihangnica samples to test for mitochondrial introgression among them. Phylogenetic analyses based on all genes revealed no introgression among them. Phylogenetic analyses based on ND2 datasets revealed that F. quadranus was comprised of six lineages which were separated by deep valleys; the sole exception is that the Main Qinling and Micang–Western Qinling lineages overlap in distribution. Analyses of population structure indicated restricted gene flow among lineages. Coalescent simulations and divergence dating indicated that the basal diversification within F. quadranus may be associated with the dramatic uplifts of the Tibetan Plateau during the Pliocene. Coalescent simulations indicated that Wuling, Daba, and Western Qinling–Micang–Longmen Mountains were refugia for F. quadranus during the LGM. Demographic analyses indicated that the Daba lineage experienced population size increase prior to the LGM but the Main Qinling and the Micang–Western Qinling lineages expanded in population size and range after the LGM, and the other lineages almost have stable population size or slight slow population size decline.

Conclusions/Significance

The Qinling–Daba Mountains hosted three refugia for F. quadranus during the LGM. Populations that originated in the Daba Mountains colonized the Main Qinling Mountains after the LGM. Recent sharp expansion of the Micang–Western Qinling and Main Qinling lineages probably contribute to their present-day secondary contact.  相似文献   

9.
We assessed the effects of the prominent biogeographic (Point Conception and the Peninsula of Baja California) and phylogeographic barriers (Los Angeles Region) of the northeastern Pacific on the population connectivity of the brown smoothhound shark, Mustelus henlei (Triakidae). Data from the mitochondrial control region and six nuclear microsatellite loci revealed significant population structure among three populations: northern (San Francisco), central (Santa Barbara, Santa Catalina, Punta Lobos, and San Felipe), and southern (Costa Rica). Patterns of long‐term and contemporary migration were incongruent, with long‐term migration being asymmetric and occurring in a north to south direction and a lack of significant contemporary migration observed between localities with the exception of Punta Lobos that contributed migrants to all localities within the central population. Our findings indicate that Point Conception may be restricting gene flow between the northern and central populations whereas barriers to gene flow within the central population would seem to be ineffective; additionally, a contemporary expansion of tropical M. henlei into subtropical and temperate waters may have been observed.  相似文献   

10.
Species ranges that span different geographic landscapes frequently contain cryptic species‐ or population‐level structure. Identifying these possible diversification factors can often be accomplished under a comparative phylogeographic framework. However, comparisons suffer if previous studies are limited to a particular group or habitat type. In California, a complex landscape has led to several phylogeographic breaks, primarily in terrestrial species. However, two sister taxa of freshwater fish, riffle sculpin (Cottus gulosus) and Pit sculpin (Cottus pitensis), display ranges based on morphological identifications that do not coincide with these breaks. Using a comprehensive sampling and nuclear, mitochondrial and microsatellite markers, we hypothesized that proposed species ranges are erroneous based on potential hybridization/gene flow between species. Results identified a phylogeographic signature consistent with this hypothesis, with breaks at the Coast Range Mountains and Sacramento/San Joaquin River confluence. Coastal locations of C. gulosus represent a unique lineage, and ‘true’ C. gulosus were limited to the San Joaquin basin, both regions under strong anthropogenic influence and potential conservation targets. C. pitensis limits extended historically throughout the Sacramento/Pit River basin but currently are restricted to the Pit River. Interestingly, locations in the Sacramento River contained low levels of ancestral hybridization and gene flow from C. gulosus but now appear to be a distinct population. The remaining population structure was strongly correlated with Sierra Nevada presence (high) or absence (low). This study stresses the importance of testing phylogeographic breaks across multiple taxa/habitats before conservation decisions are made, but also the potential impact of different geographic landscapes on evolutionary diversification.  相似文献   

11.
Patiria miniata, a broadcast‐spawning sea star species with high dispersal potential, has a geographic range in the intertidal zone of the northeast Pacific Ocean from Alaska to California that is characterized by a large range gap in Washington and Oregon. We analyzed spatial genetic variation across the P. miniata range using multilocus sequence data (mtDNA, nuclear introns) and multilocus genotype data (microsatellites). We found a strong phylogeographic break at Queen Charlotte Sound in British Columbia that was not in the location predicted by the geographical distribution of the populations. However, this population genetic discontinuity does correspond to previously described phylogeographic breaks in other species. Northern populations from Alaska and Haida Gwaii were strongly differentiated from all southern populations from Vancouver Island and California. Populations from Vancouver Island and California were undifferentiated with evidence of high gene flow or very recent separation across the range disjunction between them. The surprising and discordant spatial distribution of populations and alleles suggests that historical vicariance (possibly caused by glaciations) and contemporary dispersal barriers (possibly caused by oceanographic conditions) both shape population genetic structure in this species.  相似文献   

12.
Western North America includes the California Floristic Province and the Pacific Northwest, biologically diverse regions highlighted by a complex topography, geology, climate and history. A number of animals span these regions and show distinctive patterns of dispersal, vicariance and lineage diversification. Examining phylogeographic patterns in the fauna of this area aids in our understanding of the forces that have contributed to the generation and maintenance of regional biodiversity. Here, we investigate the biogeography and population structure of the Northern Alligator Lizard (Elgaria coerulea), a wide‐ranging anguid endemic to western North America. We sequenced two mtDNA fragments (ND2 and ND4) for 181 individuals across the range of the species and analysed these data with phylogenetic approaches to infer population and biogeographic history, and date major divergences within the taxon. We further used Bayesian clustering methods to assess major patterns of population structure and performed ecological niche modelling (ENM) to aid in our interpretation of geographic structure and diversification of E. coerulea lineages. Our phylogeographic examination of E. coerulea uncovered surprising diversity and structure, recovering 10 major lineages, each with substantial geographic substructure. While some divergences within the species are relatively old (Pliocene, 5.3–2.6 mya), most intraspecific variation appears to be of more recent origin (Pleistocene, 2.6 mya‐11,700 ya). Current diversity appears to have arisen in the Sierra Nevada Mountains and spread west and north since the Pliocene. Finally, our ENMs suggest that much of the Coast Ranges in California provided ideal habitat during the Last Glacial Maxima (LGM) that has since contracted dramatically and shifted northwards, whereas significant portions of the Sierra Nevada were unsuitable during the LGM and have since become more suitable. Interestingly, E. coerulea shares a number of genetic boundaries with other sympatric taxa, suggesting common historical events and geomorphological features have shaped the biota of this region.  相似文献   

13.
Suture zones represent natural forums in which to examine the role of geography and ecology in the speciation process. Here, we conduct a comparative analysis designed to investigate the location of avian phylogeographic breaks and contact zones in the Guiana Shield, northern Amazonia. We use distributional and genetic data from 78 pairs of avian taxa to address whether phylogeographic breaks and contact zones are associated with contemporary landscape features. Using spatially explicit statistical models, we found that phylogeographic breaks and contact zones are not randomly distributed throughout the landscape. In general, geographic breaks cluster along physical barriers (rivers, nonforested habitats, and small mountain ranges), whereas contact zones aggregate where these barriers either break down or are easier to overcome, such as around rivers' headwaters. Our results indicate that although major Amazonian rivers are often key determinants of taxon boundaries, the "riverine barrier effect" is a synergistic consequence of the wide lower reaches of some rivers, coupled with nonriverine landscape features at the headwaters. Our data suggest that ancestral refugia are not necessary to explain current distribution patterns and that pairs of codistributed taxa do not seem to be the result of simultaneous diversification processes.  相似文献   

14.
Population histories depend on the interplay between exogeneous and endogeneous factors. In marine species, phylogeographic and demographic patterns are often shaped by sea level fluctuations, water currents and dispersal ability. Using mitochondrial control region sequences (n = 120), we infer phylogeographic structure and historic population size changes of a common littoral fish species, the black‐faced blenny Tripterygion delaisi (Perciformes, Blennioidei, Tripterygiidae) from the north‐eastern Adriatic Sea. We find that Adriatic T. delaisi are differentiated from conspecific populations in the remaining Mediterranean, but display little phylogeographic structure within the Adriatic basin. The pattern is consistent with passive dispersal of planktonic larvae along cyclonic currents within the Adriatic Sea, but limited active dispersal of adults. Demographic reconstructions are consistent with recent population expansion, probably triggered by rising sea levels after the last glacial maximum (LGM). Placing the onset of population growth between the LGM and the warming of surface waters (18 000–13 000 years BP) and employing a novel expansion dating approach, we inferred a substitution rate of 2.61–3.61% per site per MY. Our study is one of only few existing investigations of the genetic structure of animals within the Adriatic basin and is the first to provide an estimate for mitochondrial control region substitution rates in blennioid fishes.  相似文献   

15.
Lavatera assurgentiflora (Malvaceae) is one of four species of the genus Lavatera native to California and Baja California. Two geographically defined subspecies are recognized: L. a. assurgentiflora on the northern islands and L. a. glabra on the southern islands. We isolated nine polymorphic microsatellite loci that amplify in both subspecies of L. assurgentiflora. Substantial levels of polymorphism were observed at many of the loci. Four loci exhibited more than 10 alleles, polymorphism information content ranged from 0.4 to 0.8, and up to six alleles were found in some individuals, supporting reports that these taxa are hexaploid. All loci also amplified in Lavatera lindsayi from Guadalupe Island, and we anticipate that they will cross‐amplify in other California Lavatera species as well.  相似文献   

16.
Hierarchical genetic structure was examined in the three geographically-defined subspecies of spotted owl (Strix occidentalis) to define relationships among subspecies and quantify variation within and among regional and local populations. Sequences (522 bp) from domains I and II of the mitochondrial control region were analyzed for 213 individuals from 30 local breeding areas. Results confirmed significant differences between northern spotted owls and the other traditional geographically defined subspecies but did not provide support for subspecific level differences between California and Mexican spotted owls. Divergence times among subspecies estimated with a 936 bp portion of the cytochrome b gene dated Northern and California/Mexican spotted owl divergence time to 115,000–125,000 years ago, whereas California/Mexican spotted owl divergence was estimated at 15,000 years ago. Nested clade analyses indicated an association between California spotted owl and Mexican spotted owl haplotypes, implying historical contact between the two groups. Results also identified a number of individuals geographically classified as northern spotted owls (S. o. caurina) that contained haplotypes identified as California spotted owls (S. o. caurina). Among all northern spotted owls sampled (n=131), 12.9% contained California spotted owl haplotypes. In the Klamath region, which is the contact zone between the two subspecies, 20.3% (n=59) of owls were classified as California spotted owls. The Klamath region is a zone of hybridization and speciation for many other taxa as well. Analyses of population structure indicated gene flow among regions within geographically defined subspecies although there was significant differentiation among northern and southern regions of Mexican spotted owls. Among all areas examined, genetic diversity was not significantly reduced except in California spotted owls where the southern region consists of one haplotype. Our results indicate a stable contact zone between northern and California spotted owls, maintaining distinct subspecific haplotypes within their traditional ranges. This supports recovery efforts based on the traditional subspecies designation for the northern spotted owl. Further, although little variation was found between California and Mexican spotted owls, we suggest they should be managed separately because of current isolation between groups.  相似文献   

17.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

18.
Comparative phylogenetic and phylogeographic analyses have revealed a pervasive midpeninsular divergence in the mitochondrial genealogies of numerous vertebrate taxa distributed on the Baja California Peninsula. In this study, we extend the investigation of regional vicariance in Baja California to an arthropod taxon by examining patterns of phylogenetic and morphological divergence in the spider genus Homalonychus (Araneae, Homalonychidae). We analyzed data from two mtDNA genes (16S rRNA and NADH dehydrogenase subunit (1) and a nuclear gene (28S rRNA) using maximum parsimony and Bayesian phylogenetic analyses, and also conducted geometric morphometric analyses employing landmark data on male and female genitalia. Genes and morphology both reveal a deep split across the Colorado River and Gulf of California, separating Homalonychus selenopoides on the east side of river from its congener Homalonychus theologus on the west side of the river, including the Baja California Peninsula. Along the north-south axis of the Baja Peninsula, an apparently more recent midpeninsular phylogenetic break is evident within H. theologus in the mitochondrial genome and in female genitalia. However, there is no measurable divergence between northern and southern populations in either nuclear DNA or male genitalia. We suggest that this discordance between datasets reflects either a difference in rates of evolution between male versus female systems, or that male-based nuclear gene flow is obscuring a phylogenetic split that is fixed in the female-based systems. Our findings provide additional support for a midpeninsular Baja divergence event, although the timing and geological evidence for such an event remain elusive.  相似文献   

19.
We determined the phylogenetic relationships, population history, and hierarchical structure of genetic variation in pocket gophers distributed on the Baja California Peninsula (BCP), based on extensive geographic sampling. Using a fragment of the mitochondrial gene cytochrome b (cyt b), we found three latitudinal structured geographic clades (northern, central, and southern). The northern clade occurs in the border area of the USA and the north of BCP, the central clade occurs from the peninsular highlands through the Central Desert of Baja California, and the southern clade is distributed south of the San Ignacio Lagoon. AMOVA showed that genetic variation is higher among clades (64%) than within populations (18.1%). The deepest divergence among clades is very shallow (~300 000 years), which suggests that climatic changes during the Pleistocene or some inhospitable habitats have affected the structure of this group, rather than influences from older marine transgressions. Phylogenetic groups disclosed by our results do not coincide with the current infraspecific classification; therefore, we propose a change of epithet for BCP gophers (Thomomys nigricans) and a new subspecific taxonomic arrangement with four subspecies: Thomomys nigricans anitae, Thomomys nigricans martirensis, Thomomys nigricans nigricans, and Thomomys nigricans russeolus. © 2013 The Linnean Society of London  相似文献   

20.
  • Climatic fluctuations during the Pleistocene influenced the geographical distribution of plant species across the southern region of California. Following an integrative approach, we combined genetic data analysis with Environmental Niche Models (ENMs) to assess the historical range expansion of Yucca schidigera, a long‐lived desert perennial native of the Baja California Peninsula.
  • We genotyped 240 individuals with seven nuclear microsatellite to investigate genetic diversity distribution across 13 populations. Indeed, we used Environmental Niche Models to examine the changes on the distribution of suitable climatic conditions for this species during the LIG (~120 ka), LGM (~22 ka) and Mid Holocene (~6 ka).
  • We detected high genetic diversity across Y. schidigera populations (AR = 9.94 ± 0.38 SE; Hexp = 0.791 ± 0.011 SE) with genetic variation decreasing significantly with latitude (allelic richness: R 2 = 0.38, P = 0.023; expected heterocigosity: R2 = 0.32, P = 0.042). We observed low, but significant genetic differentiation (FST = 0.0678; P < 0.001) which was consistent with the parapatric distribution of the three genetic groupings detected by the Bayesian clustering algorithm. The ENMs suggest that suitable habitat for this species increased since the LGM.
  • Our results support a range expansion of Y. schidigera across northwestern Baja California during the late Quaternary. Genetic data suggest that colonization of the current distribution followed a southward directionality as suitable climatic conditions became widely available in this region. High genetic variation across our sample suggests large historic effective population sizes for this section of the geographical range.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号