首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The growth and distribution of the intracellular microbe Wolbachia pipientis during spermatogenesis in several different host/symbiont genetic combinations in Drosophila melanogaster and Drosophila simulans is described. Considerable intra- and inter-strain variation in Wolbachia density and tissue distribution was observed. Wolbachia were found inside spermatocytes and spermatids or within the somatic cyst cells surrounding the germ cells. Some strains displayed both tissue distributions. High rates of cytoplasmic incompatibility (CI) are correlated with high levels of Wolbachia only when spermatocytes and/or spermatids harbor the microbe. Wolbachia infection of somatic cyst cells, although sometimes present at high levels, did not result in significant CI expression. CI-inducing Wolbachia strains within D. simulans showed no distinguishable differences in distribution or density within infected spermatids. To dissect the relative contribution of host and symbiont to the expression of CI, Wolbachia from various host strains known to exhibit varying levels of CI were introgressed into new uninfected host genetic backgrounds. These introgression experiments confirm that the mod(+)/mod(-) phenotype is an intrinsic Wolbachia trait and is not determined by host factors. The level of sperm modification in those lines harboring Wolbachia capable of modifying sperm, however, is influenced by host genetic background. These results form the basis of the Wolbachia Infected Spermatocyte/Spermatid Hypothesis (WISSH). According to WISSH, Wolbachia infection in spermatocytes and then spermatids during sperm development is required for CI expression.  相似文献   

2.
Wolbachia is a cytoplasmically inherited alpha-proteobacterium found in a wide range of host arthropod and nematode taxa. Wolbachia infection in Drosophila is closely associated with the expression of a unique form of post-fertilization lethality termed cytoplasmic incompatibility (CI). This form of incompatibility is only expressed by infected males suggesting that Wolbachia exerts its effect during spermatogenesis. The growth and distribution of Wolbachia throughout sperm development in individual spermatocysts and elongating sperm bundles is described. Wolbachia growth within a developing cyst seems to begin during the pre-meiotic spermatocyte growth phase with the majority of bacteria accumulating during cyst elongation. Wolbachia are predominantly localized in the proximal end of the immature cyst, opposite the spermatid nuclei, and throughout development there appears little movement of Wolbachia between spermatids via the connecting cytoplasmic bridges. The overall number of new cysts infected as well as the number of spermatids/cysts infected seems to decrease with age and corresponds to the previously documented drop in CI with age. In contrast, in one CI expressing line of Drosophila melanogaster, fewer cysts are infected and a much greater degree of variation in numbers is observed between spermatids. Furthermore, the initiation and extent of the fastest period of Wolbachia growth in the D. melanogaster strain lags behind that of Drosophila simulans. The possible implications on the as yet unexplained mechanism of CI are discussed.  相似文献   

3.
Wolbachia-induced cytoplasmic incompatibility (CI) is expressed when infected males are crossed with either uninfected females or females infected with Wolbachia of different CI specificity. In diploid insects, CI results in embryonic mortality, apparently due to the the loss of the paternal set of chromosomes, usually during the first mitotic division. The molecular basis of CI has not been determined yet; however, several lines of evidence suggest that Wolbachia exhibits two distinct sex-dependent functions: in males, Wolbachia somehow "imprints" the paternal chromosomes during spermatogenesis (mod function), whereas in females, the presence of the same Wolbachia strain(s) is able to restore embryonic viability (resc function). On the basis of the ability of Wolbachia to induce the modification and/or rescue functions in a given host, each bacterial strain can be classified as belonging in one of the four following categories: mod(+) resc(+), mod(-) resc(+), mod(-) resc(-), and mod(+) resc(-). A so-called "suicide" mod(+) resc(-) strain has not been found in nature yet. Here, a combination of embryonic cytoplasmic injections and introgression experiments was used to transfer nine evolutionary, distantly related Wolbachia strains (wYak, wTei, wSan, wRi, wMel, wHa, wAu, wNo, and wMa) into the same host background, that of Drosophila simulans (STCP strain), a highly permissive host for CI expression. We initially characterized the modification and rescue properties of the Wolbachia strains wYak, wTei, and wSan, naturally present in the yakuba complex, upon their transfer into D. simulans. Confocal microscopy and multilocus sequencing typing (MLST) analysis were also employed for the evaluation of the CI properties. We also tested the compatibility relationships of wYak, wTei, and wSan with all other Wolbachia infections. So far, the cytoplasmic incompatibility properties of different Wolbachia variants are explained assuming a single pair of modification and rescue factors specific to each variant. This study shows that a given Wolbachia variant can possess multiple rescue determinants corresponding to different CI systems. In addition, our results: (a) suggest that wTei appears to behave in D. simulans as a suicide mod(+) resc(-) strain, (b) unravel unique CI properties, and (c) provide a framework to understand the diversity and the evolution of new CI-compatibility types.  相似文献   

4.
Wolbachia is an intracellular obligate symbiont, that is relatively common in insects and also found in some nematodes. Cytoplasmic incompatibility (CI) is the most commonly expressed form, of several sex altering phenotypes caused by this rickettsial-like bacterium. CI is induced when infected males mate with uninfected females, and is likely the result of bacterial-induced modification of sperm grown in a Wolbachia-infected environment. Several studies have explored the dynamics of Wolbachia bacteria during sperm development in Drosophila. This study confirms and extends these earlier investigations of Wolbachia's distribution and proliferation in male germ cell lines. We examined Wolbachia population dynamics during testis development of Drosophila simulans (Riverside) by studying their distribution during the early mitotic divisions of secondary spermatogonial and subsequent meiotic cyst cells. Wolbachia are found in lower concentration in spermatogonial than in spermatocyte cells. Cytoplasmically incompatible crosses result in low levels of viable embryos despite the occurrence of fairly high levels of uninfected cysts. During meiotic divisions Wolbachia organize themselves at the poles during prophase and telophase but arrange themselves in equatorial bands during metaphase and anaphase. Moreover, during meiosis Wolbachia are asymmetrically divided between some daughter cells. There is no strong relationship between the fusome and Wolbachia and we have not found evidence that bacteria cross the ring canals. Wolbachia were observed at the distal and proximal sides of individualization complexes. Multiple altered sperm structures were observed during the process of individualization of infected sperm.  相似文献   

5.
Estimates of Wolbachia density in the eggs, testes and whole flies of drosophilid hosts have been unable to predict the lack of cytoplasmic incompatibility (CI) expression in so-called mod(-) variants. Consequently, the working hypothesis has been that CI expression, although related to Wolbachia density, is also governed by unknown factors that are influenced by both host and bacterial genomes. Here, we compare the behaviour of the mod(-) over-replicating Wolbachia popcorn strain in its native Drosophila melanogaster host to the same strain transinfected into a novel host, namely Drosophila simulans. We report that (i) the popcorn strain is a close relative of other D. melanogaster infections, (ii) the mod(-) status of popcorn in D. melanogaster appears to result from its inability to colonize sperm bundles, (iii) popcorn is present in the bundles in D. simulans and induces strong CI expression, which demonstrates that the bacterial strain does not lack the genetic machinery for inducing CI and that there is host-species-specific control over Wolbachia tissue tropism, and (iv) infection of sperm bundles by the mod(-) D. simulans wCof strain indicates that there are several independent routes by which a strain can be a CI non-expressor.  相似文献   

6.
7.
Kang L  Ma X  Cai L  Liao S  Sun L  Zhu H  Chen X  Shen D  Zhao S  Li C 《Heredity》2003,90(1):71-76
Wolbachia are maternally inherited, intracellular alpha-proteobacteria that infect a wide range of arthropods. They manipulate the reproduction of hosts to facilitate their spread into host populations, through ways such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. The influence of Wolbachia infection on host populations has attracted considerable interest in their possible role in speciation and as a potential agent of biological control. In this study, we used both microinjection and nested PCR to show that the Wolbachia naturally infecting Drosophila simulans can be transferred into a naturally Wolbachia-infected strain of the small brown planthopper Laodelphax striatellus, with up to 30% superinfection frequency in the F(12) generation. The superinfected males of L. striatellus showed unidirectional CI when mated with the original single-infected females, while superinfected females of L. striatellus were compatible with superinfected or single-infected males. These results are, to our knowledge, the first to establish a superinfected horizontal transfer route for Wolbachia between phylogenetically distant insects. The segregation of Wolbachia from superinfected L. striatellus was observed during the spreading process, which suggests that Wolbachia could adapt to a phylogenetically distant host with increased infection frequency in the new host population; however, it would take a long time to establish a high-frequency superinfection line. This study implies a novel way to generate insect lines capable of driving desired genes into Wolbachia-infected populations to start population replacement.  相似文献   

8.
The endosymbiotic bacterium Wolbachia pipientis manipulates host reproduction by rendering infected males reproductively incompatible with uninfected females (cytoplasmic incompatibility; CI). CI is believed to occur as a result of Wolbachia-induced modifications to sperm during maturation, which prevent infected sperm from initiating successful zygote development when fertilizing uninfected females' eggs. However, the mechanism by which CI occurs has been little studied outside the genus Drosophila. Here, we show that in the sperm heteromorphic Mediterranean flour moth, Ephestia kuehniella, infected males transfer fewer fertile sperm at mating than uninfected males. In contrast, non-fertile apyrene sperm are not affected. This indicates that Wolbachia may only affect fertile sperm production and highlights the potential of the Lepidoptera as a model for examining the mechanism by which Wolbachia induces CI in insects.  相似文献   

9.
Duron O  Fort P  Weill M 《Heredity》2007,98(6):368-374
Wolbachia are maternally inherited endocellular bacteria, widespread in invertebrates and capable of altering several aspects of host reproduction. Cytoplasmic incompatibility (CI) is commonly found in arthropods and induces hatching failure of eggs from crosses between Wolbachia-infected males and uninfected females (or females infected by incompatible strains). Several factors such as bacterial and host genotypes or bacterial density contribute to CI strength and it has been proposed, mostly from Drosophila data, that older males have a lower Wolbachia load in testes which, thus, induces a lighter CI. Here, we challenge this hypothesis using different incompatible Culex pipiens mosquito strains and show that CI persists at the same intensity throughout the mosquito life span. Embryos from incompatible crosses showed even distributions of abortive phenotypes over time, suggesting that host ageing does not reduce the sperm-modification induced by Wolbachia. CI remained constant when sperm was placed in the spermathecae of incompatible females, indicating that sperm modification is also stable over time. The capacity of infected females to rescue CI was independent of age. Last, the density of Wolbachia in whole testes was highly strain-dependent and increased dramatically with age. Taken together, these data stress the peculiarity of the C.pipiens/Wolbachia interaction and suggest that the bacterial dosage model should be rejected in the case of this association.  相似文献   

10.
Wolbachia pipientis is an obligate bacterial endosymbiont, which has successfully invaded approximately 20% of all insect species by manipulating their normal developmental patterns. Wolbachia-induced phenotypes include parthenogenesis, male killing, and, most notably, cytoplasmic incompatibility. In the future these phenotypes might be useful in controlling or modifying insect populations but this will depend on our understanding of the basic molecular processes underlying insect fertilization and development. Wolbachia-infected Drosophila simulans express high levels of cytoplasmic incompatibility in which the sperm nucleus is modified and does not form a normal male pronucleus when fertilizing eggs from uninfected females. The sperm modification is somehow rescued in eggs infected with the same strain of Wolbachia. Thus, D. simulans has become an excellent model organism for investigating the manner in which endosymbionts can alter reproductive programs in insect hosts. This paper reviews the current knowledge of Drosophila early development and particularly sperm function. Developmental mutations in Drosophila that are known to affect sperm function will also be discussed.incompatibility.  相似文献   

11.
【目的】Wolbachia 是广泛存在于节肢动物和丝状线虫体内的一类共生菌, 能够以多种方式对宿主产生影响。精卵细胞质不亲和(CI)是其引起的最普遍的表型, 即感染Wolbachia的雄性宿主与未感染或感染不同品系的雌性宿主交配后, 不能产生后代或后代极少, 而感染同品系Wolbachia的雌雄宿主交配后则能正常产生后代。我们前期研究发现, 湖北武汉、 云南六库和天津3个地区黑腹果蝇Drosophila melanogaster被Wolbachia感染。本研究旨在明确这3个地区黑腹果蝇中Wolbachia的系统发育关系及其对宿主生殖的影响。【方法】利用Clustal X软件对Wolbachia的wsp基因序列进行比对, 利用MEGA软件构建系统发育树。采用多位点序列分型(MLST)的方法对Wolbachia进行分型。通过区内交配和区之间杂交的方式研究不同地区黑腹果蝇体内Wolbachia 的关系及其对果蝇生殖的影响。【结果】湖北武汉、 云南六库和天津3个地区黑腹果蝇中感染的Wolbachia都是属于A大组的Mel亚群。这3个地区果蝇感染的Wolbachia的序列类型(ST)不同, Wolbachia之间存在一定的差异。湖北武汉和天津果蝇中的Wolbachia能引起强烈的CI表型, 而云南六库果蝇中的Wolbachia引起的CI强度相对较弱。武汉果蝇中Wolbachia不能完全挽救天津果蝇中Wolbachia引起的CI表型, 而天津果蝇中Wolbachia也不能完全挽救武汉果蝇中Wolbachia引起的CI表型。【结论】武汉和天津地区黑腹果蝇中的Wolbachia可能距离较远。Wolbachia的长期共生可能对黑腹果蝇的进化产生了一定的影响, 湖北武汉与云南六库的黑腹果蝇中感染的Wolbachia属于不同的序列类型, 这2个地区的黑腹果蝇已发生了一定的分歧, 产生了一定的生殖隔离。  相似文献   

12.
Intracellular Wolbachia bacteria are obligate, maternally inherited endosymbionts found frequently in insects and other invertebrates. The evolutionary success of Wolbachia is due in part to an ability to manipulate reproduction. In mosquitoes and many other insects, Wolbachia causes a form of sterility known as cytoplasmic incompatibility (CI). Wolbachia-induced CI has attracted interest as a potential agent for affecting medically important disease vectors. However, application of the approach has been restricted by an absence of appropriate, naturally occurring Wolbachia infections. Here, we report the interspecific transfer of Wolbachia infection into a medically important mosquito. Using embryonic microinjection, Wolbachia is transferred from Drosophila simulans into the invasive pest and disease vector: Aedes albopictus (Asian tiger mosquito). The resulting infection is stably maintained and displays a unique pattern of bidirectional CI in crosses with naturally infected mosquitoes. Laboratory population cage experiments examine a strategy in which releases of Wolbachia-infected males are used to suppress mosquito egg hatch. We discuss the results in relation to developing appropriate Wolbachia-infected mosquito strains for population replacement and population suppression strategies.  相似文献   

13.
Wolbachia pipientis is a bacterium that induces cytoplasmic incompatibility (CI), the phenomenon in which infected males are reproductively incompatible with uninfected females. CI spreads in a population of hosts because it reduces the fitness of uninfected females relative to infected females. CI encompasses two steps: modification (mod) of sperm of infected males and rescuing (resc) of these chromosomes by Wolbachia in the egg. Infections associated with CI have mod+ resa+ phenotypes. However, mod- resc+ phenotypes also exist; these do not result in CI. Assuming mod/resc phenotypes are properties of the symbiont, theory predicts that mod- resc+ infections can only spread in a host population where a mod+ resc+ infection already occurs. A mod- resc+ infection spreads if the cost it imposes on the infected females is lower than the cost inflicted by the resident (mod+ resc+) infection. Furthermore, introduction of a mod- Wolbachia eventually drives infection to extinction. The uninfected population that results can be recolonized by a CI-causing Wolbachia. Here, we investigated whether variability for induction of CI was present in two Tetranychus urticae populations. In one population all isofemale lines tested were mod-. In the other, mod+ resc+ and mod- resc+ isofemale lines coexisted. We found no evidence for a cost difference to females expressing either type (mod-/-). Infections in the two populations could not be distinguished based on sequences of two Wolbachia genes. We consider the possibility that mod- is a host effect through a population dynamics model. A mod- host allele leads to infection extinction in the absence of fecundity differences. Furthermore, the uninfected population that results is immune to reestablishment of the (same) CI-causing Wolbachia.  相似文献   

14.
The endocellular microbe Wolbachia pipientis infects a wide variety of invertebrate species, in which its presence is closely linked to a form of reproductive failure termed cytoplasmic incompatibility (CI). CI renders infected males unable to father offspring when mated to uninfected females. Because CI can dramatically affect fitness in natural populations, mechanisms that abate CI can have equally large impacts on fitness. We have discovered that repeated copulation by Wolbachia-infected male Drosophila simulans significantly diminishes CI. Repeated copulation does not prevent Wolbachia from populating developing spermatids, but may reduce the time during spermatogenesis when Wolbachia can express CI. This restoration of fertility in premated infected males could have important implications for Wolbachia transmission and persistence in nature and for its exploitation as an agent of biological pest control.  相似文献   

15.
The maternally inherited bacterium Wolbachia pipientis imposes significant fitness costs on its hosts. One such cost is decreased sperm production resulting in reduced fertility of male Drosophila simulans infected with cytoplasmic incompatibility (CI) inducing Wolbachia. We tested the hypothesis that Wolbachia infection affects sperm competitive ability and found that Wolbachia infection is indeed associated with reduced success in sperm competition in non-virgin males. In the second male role, infected males sired 71% of the offspring whereas uninfected males sired 82% of offspring. This is the first empirical evidence indicating that Wolbachia infection deleteriously affects sperm competition and raises the possibility that polyandrous females can utilize differential sperm competitive ability to bias the paternity of broods and avoid the selfish manipulations of Wolbachia. This suggests a relationship between Wolbachia infection and host reproductive strategies. These findings also have important consequences for Wolbachia population dynamics because the transmission advantage of Wolbachia is likely to be undermined by sperm competition.  相似文献   

16.
Wolbachia和Cardinium均为母系遗传的胞内共生菌, 它们能够通过诱导胞质不亲和(cytoplasmic incompatibility, CI)以调控寄主的生殖。目前, 关于Wolbachia和Cardinium共同对同一寄主进行生殖操控的机制还不清楚。本研究以皮氏叶螨Tetranychus piercei McGregor广州种群为实验材料, 通过杂交实验和荧光原位杂交的方法, 研究Wolbachia和Cardinium单感染和双感染对寄主生殖的影响。结果表明: 单感染Wolbachia诱导较弱的CI, 不亲和组合的未孵化率为17.8%±1.6%。单感染Cardinium及双感染Wolbachia和Cardinium能诱导高强度的CI, 不亲和组合的未孵化率分别为70.3%±1.3%和72.9%±1.2%。同时双感染Wolbachia和Cardinium雌螨的平均产卵量为35.2±1.2, 显著高于单感染和不感染的雌螨的产卵量。Wolbachia 和Cardinium分别诱导以及共同诱导CI的水平与精子形成过程中的感染情况有关。Wolbachia和Cardinium的垂直传播模式结果显示, 在卵的不同发育阶段, Wolbachia和Cardinium主要伴随着营养物质从滋养细胞、 中肠、 输卵管进入发育中的卵。研究结果为进一步了解 Wolbachia和Cardinium的母系遗传机制提供了重要依据。  相似文献   

17.
Snook RR  Cleland SY  Wolfner MF  Karr TL 《Genetics》2000,155(1):167-178
Infection in Drosophila simulans with the endocellular symbiont Wolbachia pipientis results in egg lethality caused by failure to properly initiate diploid development (cytoplasmic incompatibility, CI). The relationship between Wolbachia infection and reproductive factors influencing male fitness has not been well examined. Here we compare infected and uninfected strains of D. simulans for (1) sperm production, (2) male fertility, and (3) the transfer and processing of two accessory gland proteins, Acp26Aa or Acp36De. Infected males produced significantly fewer sperm cysts than uninfected males over the first 10 days of adult life, and infected males, under varied mating conditions, had lower fertility compared to uninfected males. This fertility effect was due to neither differences between infected and uninfected males in the transfer and subsequent processing of accessory gland proteins by females nor to the presence of Wolbachia in mature sperm. We found that heat shock, which is known to decrease CI expression, increases sperm production to a greater extent in infected compared to uninfected males, suggesting a possible link between sperm production and heat shock. Given these results, the roles Wolbachia and heat shock play in mediating male gamete production may be important parameters for understanding the dynamics of infection in natural populations.  相似文献   

18.
Wolbachia are maternally transmitted endocellular bacteria causing a reproductive incompatibility called cytoplasmic incompatibility (CI) in several arthropod species, including Drosophila. CI results in embryonic mortality in incompatible crosses. The only bacterial strain known to infect Drosophila melanogaster (wDm) was transferred from a D. melanogaster isofemale line into uninfected D. simulans isofemale lines by embryo microinjections. Males from the resulting transinfected lines induce >98% embryonic mortality when crossed with uninfected D. simulans females. In contrast, males from the donor D. melanogaster line induce only 18-32% CI on average when crossed with uninfected D. melanogaster females. Transinfected D. simulans lines do not differ from the D. melanogaster donor line in the Wolbachia load found in the embryo or in the total bacterial load of young males. However, >80% of cysts are infected by Wolbachia in the testes of young transinfected males, whereas only 8% of cysts are infected in young males from the D. melanogaster donor isofemale line. This difference might be caused by physiological differences between hosts, but it might also involve tissue-specific control of Wolbachia density by D. melanogaster. The wDm-transinfected D. simulans lines are unidirectionally incompatible with strains infected by the non-CI expressor Wolbachia strains wKi, wMau, or wAu, and they are bidirectionally incompatible with strains infected by the CI-expressor Wolbachia strains wHa or wNo. However, wDm-infected males do not induce CI toward females infected by the CI-expressor strain wRi, which is found in D. simulans continental populations, while wRi-infected males induce partial CI toward wDm-infected females. This peculiar asymmetrical pattern could reflect an ongoing divergence between the CI mechanisms of wRi and wDm. It would also confirm other results indicating that the factor responsible for CI induction in males is distinct from the factor responsible for CI rescue in females.  相似文献   

19.
S Charlat  C Calmet  H Mer?ot 《Genetics》2001,159(4):1415-1422
Cytoplasmic incompatibility (CI) is induced by the endocellular bacterium Wolbachia. It results in an embryonic mortality occurring when infected males mate with uninfected females. The mechanism involved is currently unknown, but the mod resc model allows interpretation of all observations made so far. It postulates the existence of two bacterial functions: modification (mod) and rescue (resc). The mod function acts in the males' germline, before Wolbachia are shed from maturing sperm. If sperm is affected by mod, zygote development will fail unless resc is expressed in the egg. Interestingly, CI is also observed in crosses between infected males and infected females when the two partners bear different Wolbachia strains, demonstrating that mod and resc interact in a specific manner: Two Wolbachia strains are compatible with each other only if they harbor the same compatibility type. Here we focus on the evolutionary process involved in the emergence of new compatibility types from ancestral ones. We argue that new compatibility types are likely to evolve under a wider range of conditions than previously thought, through a two-step process. First, new mod variants can arise by mutation and spread by drift. This is possible because mod is expressed in males and Wolbachia is transmitted by females. Second, once such a mod variant achieves a certain frequency, it can create the conditions for the deterministic invasion of a new resc variant, allowing the invasion of a new mod resc pair. Furthermore, we show that a stable polymorphism might be maintained in natural populations, allowing the long-term existence of "suicidal" Wolbachia strains.  相似文献   

20.
Wolbachia与昆虫精卵细胞质不亲和   总被引:1,自引:0,他引:1  
Wolbachia是广泛分布在昆虫体内的一类共生菌,能通过多种机制调节宿主的生殖方式,包括诱导宿主精卵细胞质不亲和(CI)、孤雌生殖、雌性化、杀雄等,其中细胞质不亲和为最普遍的表型,即感染Wolbachia的雄性和未感染或感染不同品系Wolbachia的雌性宿主交配后,受精卵不能正常发育,在胚胎期死亡。多数CI胚胎在第1次分裂时,来自父本的染色质浓缩缺陷,导致父本遗传物质无法正常分配到子细胞中,因而引起胚胎死亡。守门员模型认为,产生CI可能需要有两种因子,其中之一使得精子发生修饰改变,导致受精后雄性原核发育滞后。第2种因子可能与Wolbachia的原噬菌体有关,在胚胎发育后期导致胚胎死亡。近期的研究已发现,在Wolbachia感染的宿主中,一些与生殖细胞发生和繁殖相关基因的表达发生了显著改变,Wolbachia可能因此对宿主的生殖产生重大影响,进而导致CI的产生。本文主要综述了CI的细胞学表型、解释CI的模型及其分子机理,向读者展示一个小小的细菌是如何通过精妙的策略影响昆虫宿主的繁殖,从而实现其自身的生存和传播的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号