首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major focus of this work was to investigate how altered protein thiol redox homeostasis affects radiation-induced cell death. We used the cells of wild-type CHO cell line K1, the CHO cell line E89, which is null for G6PD activity, and a radiation-sensitive CHO cell line, XRS5. The protein-thiol redox status of cells was altered with cell-permeable disulfides, hydroxyethyldisulfide (HEDS) or lipoate. HEDS is primarily reduced by thioltransferase (glutaredoxin), with GSH as the electron donor. In contrast, lipoate is reduced by thioredoxin reductase. HEDS was reduced at a greater rate than lipoate by G6PD-containing K1 (wild-type) cells. Reduction of disulfides by G6PD-deficient cells was significantly slower with HEDS as substrate and was nearly absent with lipoate. The rate of reduction of HEDS by E89 cells decelerated to near zero by 30 min, whereas the reduction continued at nearly the same rate during the entire measurement period for K1 cells. HEDS treatment decreased the GSH and protein thiol (PSH) content more in G6PD-deficient cells than in G6PD-containing cells. On the other hand, lipoate did not significantly alter the protein thiol, but it increased the GSH in K1 cells. Acute depletion of GSH by l-buthionine-sulfoximine (l-BSO) in combination with dimethylfumarate significantly decreased the rate of reduction of HEDS by K1 cells close to that of G6PD-deficient cells. Prior GSH depletion by l-BSO alone significantly decreased the PSH in glucose-depleted E89 cells exposed to HEDS, but this did not occur with K1 cells. The radiation response of G6PD-deficient cells was significantly sensitized by HEDS, but HEDS did not have this effect on K1 cells. The DNA repair-deficient XRS5 CHO cells displayed the same capacity as K1 cells for HEDS reduction, and like K1 cells the XRS5 cells were not sensitized to radiation by HEDS treatment. Deprivation of glucose, which provides the substrate for G6PD in the oxidative pentose phosphate cycle, decreased the rate of bioreduction of HEDS and lipoate in G6PD-containing cells to the level in G6PD-deficient cells. In the absence of glucose, HEDS treatment diminished non-protein thiol and protein thiol to the same level as those in G6PD-deficient cells and sensitized the K1 cells to HEDS treatment. However, depletion of glucose did not alter the sensitivity of XRS5 cells in either the presence or absence of HEDS. Overall the results suggest a major role for pentose cycle control of protein redox state coupled to the activities of the thioltransferase and thioredoxin systems. The results also show that protein thiol status is a critical factor in cell survival after irradiation.  相似文献   

2.
The cytoplasmic domain of the insulin receptor (IR) beta-subunit contains cysteine (Cys) residues whose reactivity and function remain uncertain. In this study, we examined the ability of the bifunctional cross-linking reagent 1,6-bismaleimidohexane (BMH) to covalently link IR with interacting proteins that possess reactive thiols. Transfected Chinese hamster ovary cells expressing either the wild-type human IR, C-terminally truncated receptors, or mutant receptors with Cys --> Ala substitutions and mouse 3T3-L1 adipocytes were used to compare the BMH effect. The results showed the formation of a large complex between the wild-type human receptor beta-subunit and molecule X, a thiol-reactive membrane-associated protein, in both intact and semipermeabilized cells in response to BMH. Prior cell stimulation with insulin had only a modest effect in this process. Western blot analysis revealed that the receptor alpha-subunit was not present in the beta-X complex. The BMH cross-linking did not inhibit in vitro tyrosine phosphorylation of the receptor complexed with molecule X. Both the human IR Cys981Ala mutant and murine IR, that lacks the equivalent of human Cys(981), failed to react with BMH. Finally, no covalent association between IR beta-subunit and IRS-1, the protein tyrosine phosphatase LAR or SHP-2 was observed in BMH-treated cells expressing the wild-type human IR. These results demonstrate a striking difference in reactivity among the cytoplasmic IR beta-subunit thiols and clearly show that Cys(981) of human IR beta-subunit is in close proximity to a thiol-reactive membrane-associated protein under basal and insulin-stimulated conditions.  相似文献   

3.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

4.
IL-12 is a 75 kDa heterodimeric cytokine composed of two disulfide-linked subunits, p35 and p40, which plays an important role in the regulation of the immune response. We tested the hypothesis that thiol antioxidants might interfere with dimerization of the two IL-12 subunits. We thus studied the effect of reduced glutathione (GSH) and N-acetyl-cysteine (NAC) on IL-12 p75 production by human THP-1 cell stimulated with IFN-gamma and Staphylococcus aureus Cowan strain I (SAC), using ELISAs specific for IL-12 p75 or the p40 subunit. NAC and GSH, but not cystine, at concentrations of 5-10 mM inhibited production of IL-12 p75 but not of the p40 subunit. NAC did not inhibit p40 or p35 mRNA expression in dendritic cells or THP-1 cells, or NF-kappa B activation in THP-1 cells. The effect of NAC was specific for IL-12 p75, as NAC did not affect induction of MHC class II expression by IFN-gamma-stimulated THP-1 cells. IL-12 dimer formation appears to be reduced by NAC also in vivo, because pretreatment with NAC (1 g/kg, orally), before LPS injection in mice, inhibited peak IL-12 p75 serum levels without affecting those of p40. We conclude that thiol levels regulate IL-12 p75 production and that assembly of the heterodimer is a step that might represent a target for pharmacological intervention.  相似文献   

5.
The thiol redox status of cultured human bronchial fibroblasts has been characterized at various growth conditions using thiol-reactive monobromobimane, with or without the combination of dithiotreitol, a strong reducing agent. This procedure has enabled measurement of the cellular content of reduced glutathione (GSH), total glutathione equivalents, cysteine, total cysteine equivalents, protein sulfhydryls, protein disulfides, and mixed disulfides. Passage of cells with trypsin perturbs the cellular thiol homeostasis and causes a 50% decrease in the GSH content, whereas the total cysteine content is subsequently increased severalfold during cell attachment. During subsequent culture, transient severalfold increased levels of GSH, protein-bound thiols, and protein disulfides are reached, whereas the total cysteine content gradually declines. These changes in the redox balance of both low-molecular-weight thiols and protein-bound thiols correlate with cell proliferation and mostly precede the major growth phase. When the onset of proliferation is inhibited by maintenance of cells in medium containing decreased amounts of serum, the GSH content remains significantly increased. Subsequent stimulation of growth by addition of serum results in decreased GSH levels at the onset of proliferation. In thiol-depleted medium, proliferation is also inhibited, whereas GSH levels are increased to a lesser extent than in complete medium. Exposure to buthionine sulfoximine inhibits growth, prevents GSH synthesis, and results in accumulation of total cysteine, protein-bound cysteine, and protein disulfides. For extracellular cystine, variable rates of cellular uptake correlate with the initial increase in the total cysteine content observed following subculture and with the GSH peak that precedes active proliferation. The results strongly suggest that specific fluctuations in the cellular redox balance of both free low-molecular-weight thiols and protein sulfhydryls are involved in growth regulation of normal human fibroblasts.  相似文献   

6.
The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway.  相似文献   

7.
Vanadate (sodium orthovanadate), an inhibitor of phosphotyrosine phosphatases (PTPs), mimics many of the metabolic actions of insulin in vitro and in vivo. The potential of vanadate to stimulate glucose transport independent of the early steps in insulin signaling prompted us to test its effectiveness in an in vitro model of insulin resistance. In primary rat adipocytes cultured for 18 h in the presence of high glucose (15 mm) and insulin (10(-7) m), sensitivity to insulin-stimulated glucose transport was decreased. In contrast, there was a paradoxical enhanced sensitivity to vanadate of the insulin-resistant cells (EC(50) for control, 325 +/- 7.5 microm; EC(50) for insulin-resistant, 171 +/- 32 microm; p < 0.002). Enhanced sensitivity was also present for vanadate stimulation of insulin receptor kinase activity and autophosphorylation and Akt/protein kinase B Ser-473 phosphorylation consistent with more effective PTP inhibition in the resistant cells. Investigation of this phenomenon revealed that 1) depletion of GSH with buthionine sulfoximine reproduced the enhanced sensitivity to vanadate while preincubation of resistant cells with N-acetylcysteine (NAC) prevented it, 2) intracellular GSH was decreased in resistant cells and normalized by NAC, 3) exposure to high glucose and insulin induced an increase in reactive oxygen species, which was prevented by NAC, 4) EPR (electron paramagnetic resonance) spectroscopy showed a decreased amount of vanadyl (+4) in resistant and buthionine sulfoximine-treated cells, which correlated with decreased GSH and increased vanadate sensitivity, while total vanadium uptake was not altered, and 5) inhibition of recombinant PTP1B in vitro was more sensitive to vanadate (+5) than vanadyl (+4). In conclusion, the paradoxical increased sensitivity to vanadate in hyperglycemia-induced insulin resistant adipocytes is due to oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). Thus, sensitivity of PTP inhibition and glucose transport to vanadate is regulated by cellular redox state.  相似文献   

8.
K B Chiacchia 《Biochemistry》1988,27(13):4894-4902
Elements of the quaternary structure of the native and dithiothreitol- (DTT) reduced rat adipocyte insulin receptor have been elucidated by vectorial probing and subunit cross-linking. The charged reducing agents glutathione and beta-mercaptoethylamine were used to reduce the class I disulfides of the receptor in intact adipocytes, demonstrating the extracellular location of the disulfide directly. This interpretation was confirmed by use of DTT as a reducing agent and the nonpermeant sulfhydryl blocking reagent Thiolyte MQ to prevent the reoxidation of the class I sulfhydryl groups which occurred when they were not blocked. It was found that the above reoxidation of the receptor is dependent on the concentration of insulin in the nanomolar range, not occurring measurably at 4 degrees C in its absence. Cross-linking studies with ethylene glycol bis(succinimidyl succinate) demonstrated that the alpha subunits could not be cross-linked to each other after reduction of the class I disulfides, suggesting that the interaction between the receptor heterodimers may be due primarily to the disulfide bonds.  相似文献   

9.
Redox state of glutathione in human plasma   总被引:5,自引:0,他引:5  
Thiol and disulfide forms of glutathione (GSH) and cysteine (Cys) were measured in plasma from 24 healthy individuals aged 25-35 and redox potential values (E(h)) for thiol/disulfide couples were calculated using the Nernst equation. Although the concentration of GSH (2.8 +/- 0.9 microM) was much greater than that of GSSG (0.14 +/- 0.04 microM), the redox potential of the GSSG/2GSH pool (-137 +/- 9 mV) was considerably more oxidized than values for tissues and cultured cells (-185 to -258 mV). This indicates that a rapid oxidation of GSH occurs upon release into plasma. The difference in values between individuals was remarkably small, suggesting that the rates of reduction and oxidation in the plasma are closely balanced to maintain this redox potential. The redox potential for the Cys and cystine (CySS) pool (-80 +/- 9 mV) was 57 mV more oxidized, showing that the GSSG/2GSH and the CySS/2Cys pools are not in redox equilibrium in the plasma. Potentials for thiol/disulfide couples involving CysGly were intermediate between the values for these couples. Regression analyses showed that the redox potentials for the different thiol/disulfide couples within individuals were correlated, with the E(h) for CySS-mono-Gly/(Cys. CysGly) providing the best correlation with other low molecular weight pools as well as protein disulfides of GSH, CysGly and Cys. These results suggest that E(h) values for GSSG/2GSH and CySS-mono-Gly/(Cys. CysGly) may provide useful means to quantitatively express the oxidant/antioxidant balance in clinical and epidemiologic studies.  相似文献   

10.
We assessed the roles of insulin receptor substrate-1 (IRS-1) and Shc in insulin action on farnesyltransferase (FTase) and geranylgeranyltransferase I (GGTase I) using Chinese hamster ovary (CHO) cells that overexpress wild-type human insulin receptors (CHO-hIR-WT) or mutant insulin receptors lacking the NPEY domain (CHO-DeltaNPEY) or 3T3-L1 fibroblasts transfected with adenoviruses that express the PTB or SAIN domain of IRS-1 and Shc, the pleckstrin homology (PH) domain of IRS-1, or the Src homology 2 (SH2) domain of Shc. Insulin promoted phosphorylation of the alpha-subunit of FTase and GGTase I in CHO-hIR-WT cells, but was without effect in CHO-DeltaNPEY cells. Insulin increased FTase and GGTase I activities and the amounts of prenylated Ras and RhoA proteins in CHO-hIR-WT (but not CHO-DeltaNPEY) cells. Overexpression of the PTB or SAIN domain of IRS-1 (which blocked both IRS-1 and Shc signaling) prevented insulin-stimulated phosphorylation of the FTase and GGTase I alpha-subunit activation of FTase and GGTase I and subsequent increases in prenylated Ras and RhoA proteins. In contrast, overexpression of the IRS-1 PH domain, which impairs IRS-1 (but not Shc) signaling, did not alter insulin action on the prenyltransferases, but completely inhibited the insulin effect on the phosphorylation of IRS-1 and on the activation of phosphatidylinositol 3-kinase and Akt. Finally, overexpression of the Shc SH2 domain completely blocked the insulin effect on FTase and GGTase I activities without interfering with insulin signaling to MAPK. These data suggest that insulin signaling from its receptor to the prenyltransferases FTase and GGTase I is mediated by the Shc pathway, but not the IRS-1/phosphatidylinositol 3-kinase pathway. Shc-mediated insulin signaling to MAPK may be necessary (but not sufficient) for activation of prenyltransferase activity. An additional pathway involving the Shc SH2 domain may be necessary to mediate the insulin effect on FTase and GGTase I.  相似文献   

11.
Subunit structure and dynamics of the insulin receptor   总被引:3,自引:0,他引:3  
A model for the minimum subunit composition and stiochiometry of the physiologically relevant insulin receptor has been deduced based on results obtained by affinity labeling of this receptor in a variety of cell types and species. We propose that the receptor is a symmetrical disulfide-linked heterotetramer composed of two alpha (apparent Mr = 125,000) and two beta (apparent Mr = 90,000) glycoprotein subunits in the configuration (beta-S-S-alpha)-S-S-(alpha-S-S-beta). The disulfide or disulfides linking the two (alpha-S-S-beta) halves (class I disulfides) exhibit greater sensitivity to reduction by exogenous reductants than those linking the alpha and beta subunits (class II disulfides). When the class I disulfides are reduced by addition of diothiothreitol to intact cells, the receptor retains its ability to bind insulin and to effect a biological response. The beta subunit contains a site at about the center of its amino acid sequence that is extremely sensitive to proteolytic cleavage by elastaselike proteases, yielding a beta 1 fragment (Mr = 45,000) that remains disulfide linked to the receptor complex and a free beta 2 fragment. Binding of insulin to the receptor complex appears to result in the formation or stabilization of a new receptor conformation as evidenced by an altered susceptibility of the alpha subunit to exogenous trypsin. A receptor structure with high affinity for insulinlike growth factor (IGF) I and low affinity for insulin in fibroblast and placental membranes has also been affinity labeled. It exhibits the same structural features found for the insulin receptor, including two classes of disulfide bridges and beta subunits highly sensitive to proteolytic cleavage. These recent observations identifying the presence of distinct insulin and IGF-I receptors that share similar complex structures suggest that these hormones may also share common mechanisms of transmembrane signaling.  相似文献   

12.
As we reported previously, GADD153 is upregulated in colon cancer cells exposed to curcumin. In the present study, we ascertained the involvement of glutathione and certain sulfhydryl enzymes associated with signal transduction in mediating the effect of curcumin on GADD153. Curcumin-induced GADD153 gene upregulation was attenuated by reduced glutathione (GSH) or N-acetylcysteine (NAC) and potentiated by the glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO). Additionally, GSH and NAC decreased the intracellular content of curcumin. Conversely, curcumin decreased intracellular glutathione and also increased the formation of reactive oxygen species (ROS) in cells, but either GSH or NAC prevented both of these effects of curcumin. In affecting the thiol redox status, curcumin caused activation of certain sulfhydryl enzymes involved in signal transduction linked to GADD153 expression. Curcumin increased the expression of the phosphorylated forms of PTK, PDK1, and PKC-delta, which was attenuated by either GSH or NAC and potentiated by BSO. Furthermore, selective inhibitors of PI3K and PKC-delta attenuated curcumin-induced GADD153 upregulation. Collectively, these findings suggest that a regulatory thiol redox-sensitive signaling cascade exists in the molecular pathway leading to induction of GADD153 expression as caused by curcumin.  相似文献   

13.
The analysis of the global thiol–disulfide redox status in tissues and cells is a challenging task since thiols and disulfides can undergo artificial oxido-reductions during sample manipulation. Because of this, the measured values, in particular for disulfides, can have a significant bias. Whereas this methodological problem has already been addressed in samples of red blood cells and solid tissues, a reliable method to measure thiols and disulfides in cell cultures has not been previously reported.Here, we demonstrate that the major artifact occurring during thiol and disulfide analysis in cultured cells is represented by glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG) overestimation, due to artificial oxidation of glutathione (GSH) during sample manipulation, and that this methodological problem can be solved by the addition of N-ethylmaleimide (NEM) immediately after culture medium removal. Basal levels of GSSG and PSSG in different lines of cultured cells were 3–5 and 10–20 folds higher, respectively, when the cells were processed without NEM. NEM pre-treatment also prevented the artificial reduction of disulfides that occurs during the pre-analytical phase when cells are exposed to an oxidant stimulus. In fact, in the absence of NEM, after medium removal, GSH, GSSG and PSSG levels restored their initial values within 15–30 min, due to the activity of reductases and the lack of the oxidant. The newly developed protocol was used to measure the thiol–disulfide redox status in 16 different line cells routinely used for biomedical research both under basal conditions and after treatment with disulfiram, a thiol-specific oxidant (0–200 μM concentration range).Our data indicate that, in most cell lines, treatment with disulfiram affected the levels of GSH and GSSG only at the highest concentration. On the other hand, PSSG levels increased significantly also at the lower concentrations of the drug, and the rise was remarkable (from 100 to 1000 folds at 200 μM concentration) and dose-dependent for almost all the cell lines. These data support the suitability of the analysis of PSSG in cultured cells as a biomarker of oxidative stress.  相似文献   

14.
Mammalian metallothioneins are redox-active metalloproteins. In the case of zinc metallothioneins, the redox activity resides in the cysteine sulfur ligands of zinc. Oxidation releases zinc, whereas reduction re-generates zinc-binding capacity. Attempts to demonstrate the presence of the apoprotein (thionein) and the oxidized protein (thionin) in tissues posed tremendous analytical challenges. One emerging strategy is differential chemical modification of cysteine residues in the protein. Chemical modification distinguishes three states of the cysteine ligands (reduced, oxidized and metal-bound) based on (i) quenched reactivity of the thiolates when bound to metal ions and restoration of thiol reactivity in the presence of metal-ion-chelating agents, and (ii) modification of free thiols with alkylating agents and subsequent reduction of disulfides to yield reactive thiols. Under normal physiological conditions, metallothionein exists in three states in rat liver and in cell lines. Ras-mediated oncogenic transformation of normal HOSE (human ovarian surface epithelial) cells induces oxidative stress and increases the amount of thionin and the availability of cellular zinc. These experiments support the notion that metallothionein is a dynamic protein in terms of its redox state and metal content and functions at a juncture of redox and zinc metabolism. Thus redox control of zinc availability from this protein establishes multiple methods of zinc-dependent cellular regulation, while the presence of both oxidized and reduced states of the apoprotein suggest that they serve as a redox couple, the generation of which is controlled by metal ion release from metallothionein.  相似文献   

15.
The estrogen metabolites catecholestrogens (or hydroxyestrogens) are involved in carcinogenesis and the development of resistance to methotrexate. This induction of drug resistance correlates with the relative efficiency of catecholestrogens in the generation of reactive oxygen species (ROS) and the induction of DNA strand breaks. Although antioxidants can neutralize ROS, the generation of these reactive species by catecholestrogens can be enhanced by electron donors like NADH. Therefore, this study was undertaken to determine the ability of different thiol agents (GSH, NAC, DTT, DHLA) to either inhibit or enhance the level of DNA damage induced by the H(2)O(2) generating system 4-hydroxyestradiol/Cu(II). Our results show that GSH, DTT, and DHLA inhibited the induction of the 4-hydroxyestradiol/Cu(II)-mediated DNA damage, with GSH showing the best potential. In contrast, the GSH precursor NAC at low concentrations was able to enhance the level of oxidative damage, as observed with NADH. NAC can reduce Cu(II) to Cu(I) producing the radical NAC&z.rad;, which can generate the superoxide anion. However, the importance of this pathway appears to be relatively minor since the addition of NAC to the 4-hydroxyestradiol/Cu(II) system generates about 15 times more DNA strand breaks than NAC and Cu(II) alone. We suggest that NAC can perpetuate the redox cycle between the quinone and the semiquinone forms of the catecholestrogens, thereby enhancing the production of ROS. In conclusion, this study demonstrates the crucial importance of the choice of antioxidant as potential therapy against the negative biological effects of estrogens.  相似文献   

16.
Na-K-ATPase in rat cerebellar granule cells is redox sensitive   总被引:1,自引:0,他引:1  
Redox-induced regulation of the Na-K-ATPase was studied in dispersed rat cerebellar granule cells. Intracellular thiol redox state was modulated using glutathione (GSH)-conjugating agents and membrane-permeable ethyl ester of GSH (et-GSH) and Na-K-ATPase transport and hydrolytic activity monitored as a function of intracellular reduced thiol concentration. Depletion of cytosolic and mitochondrial GSH pools caused an increase in free radical production in mitochondria and rapid ATP deprivation with a subsequent decrease in transport but not hydrolytic activity of the Na-K-ATPase. Selective conjugation of cytosolic GSH did not affect free radical production and Na-K-ATPase function. Unexpectedly, overloading of cerebellar granule cells with GSH triggered global free radical burst originating most probably from GSH autooxidation. The latter was not followed by ATP depletion but resulted in suppression of active K(+) influx and a modest increase in mortality. Suppression of transport activity of the Na-K-ATPase was observed in granule cells exposed to both permeable et-GSH and impermeable GSH, with inhibitory effects of external and cytosolic GSH being additive. The obtained data indicate that redox state is a potent regulator of the Na-K-ATPase function. Shifts from an "optimal redox potential range" to higher or lower levels cause suppression of the Na-K pump activity.  相似文献   

17.
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions.  相似文献   

18.
Insulin and insulin-like growth factor I (IGF-I) are known to affect cardiovascular disease. We have investigated ligand binding and the dose-response relationship for insulin and IGF-I on vascular smooth muscle cells (VSMCs) at the receptor level. VSMCs from rat thoracic aorta were serum starved, stimulated with IGF-I or insulin, lysed, immunoprecipitated, and analyzed by Western blot. d-[U-(14)C]Glucose accumulation and [6-(3)H]thymidine incorporation into DNA were also measured. Specific binding of both insulin and IGF-I was demonstrated, being higher for IGF-I. Both IGF-I receptor (IGF-IR) and insulin receptor (IR) beta-subunits were detected and coprecipitated after immunoprecipitation (IP) against either of the two. No coprecipitation was found after reduction of disulphide bonds with dithiotreitol before IP. After stimulation with 10(-10)-10(-9) M IGF-I, IP of the IGF-IR, or IR beta-subunit and immunoblot with anti-phosphotyrosine antibody, we found two distinct bands indicating phosphorylation of both the IGF-IR and the IR beta-subunit. Stimulation with 10(-10)-10(-9) M insulin and IP against the IGF-IR did not show phosphorylation of either beta-subunit, whereas after IP of the IR we found phosphorylation of the IR beta-subunit. [(14)C]Glucose accumulation and [(3)H]thymidine incorporation were elevated in cells stimulated with IGF-I at 10(-10)-10(-7) M, reaching maximum by 10(-9) M. Insulin stimulation showed measurable effects only at supraphysiological concentrations, 10(-8)-10(-7) M. In conclusion, coprecipitation of both the IGF-IR and the IR beta-subunit indicates the presence of hybrid insulin/IGF-I receptors in VSMC. At a physiological concentration, insulin activates the IR but does not affect either glucose metabolism or DNA synthesis, whereas IGF-I both activates the receptor and elicits biological effect.  相似文献   

19.
Declines in oxidative and thermal stress tolerance are well documented in aging systems. It is thought that these alterations are due in part to reductions in antioxidant defenses. Although intracellular thiols are major redox buffers, their role in maintaining redox homeostasis is not completely understood, particularly during aging, where the reliance on antioxidant enzymes and proteins may be altered. To determine whether thiol supplementation improved the antioxidant enzyme profile of aged animals after heat stress, young and old Fischer 344 rats were treated with N-acetylcysteine (NAC; 4 mmol/kg ip) 2 h before heat stress. Liver tissue was collected before and 0, 30, and 60 min after heat stress. Aging was associated with a significant decline in tissue cysteine and glutathione (GSH) levels. There was also an age-related decrease in copper-zinc superoxide dismutase activity. Heat stress did not alter liver GSH, glutathione disulfide, or antioxidant enzyme activity. With NAC treatment, old animals took up more cysteine than young animals as reflected in an increase in liver GSH and a corresponding decrease in glutamate cysteine ligase activity. Catalase activity increased after NAC treatment in both age groups. Copper-zinc superoxide dismutase activity did not change with heat stress or drug treatment, whereas manganese superoxide dismutase activity was increased in old animals only. These data indicate that GSH synthesis is substrate limited in old animals. Furthermore, aged animals were characterized by large fluctuations in antioxidant enzyme balance after NAC treatment, suggesting a lack of fine control over these enzymes that may leave aged animals susceptible to subsequent stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号