首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
为探讨不同年代水稻(Oryza sativa)品种间库、源及库/源的变化,用吉林省1958–2005年间育成的33个水稻品种为材料,对库、源及库/源的特征进行了研究。结果表明,吉林省47年来在水稻品种遗传改良过程中库和源性状均得到了改善。其中,单株穗重和单株粒数分别增长了62.93%和37.65%,平均年增长率分别为1.34%和0.80%,与育成年代均呈极显著正相关;单株叶面积、单株光合能力和剑叶净光合速率(Pn)分别增长了13.75%、24.80%和12.60%,年增长率分别为0.29%、0.53%和0.27%,与育成年代均呈显著正相关。不同年代育成水稻品种穗重/单株光合能力、粒数/单株光合能力无明显变化,但穗重/叶面积和粒数/叶面积与育成年代呈显著正相关,相关系数分别为0.441 0(P0.05)和0.401 7(P0.05);穗重/Pn和粒数/Pn与育成年代呈极显著正相关,相关系数分别为0.509 3(P0.01)和0.483 2(P0.01)。以上结果说明,吉林省水稻品种产量的增加是由于库和源共同作用的结果,但单位叶面积光合能力的改善远远落后于其它库源性状的增长。进一步提高叶片Pn并改善叶片的光合能力应作为高产水稻品种选育的新目标。  相似文献   

2.
Summary Studies conducted at the International Rice Research Institute (IRRI) during 1980 and 1981 have shown up to 73% heterosis, 59% heterobeltiosis and 34% standard heterosis for yield in rice. The latter was estimated in comparison to commercial varieties: IR36 and IR42 (yield 4–5 t/ha in wet season trials and 7–8 t/ha in dry season trials). Generally speaking, absolute yield was lower and extent of standard heterosis was higher in wet season than in dry season with some exception. Yields up to 5.9 t/ha (22% standard heterosis) in the wet season and 10.4 t/ha (34% standard heterosis) in the dry season were obtained. Most of the hybrids performed better in some season while some performed better in both seasons. Hybrids showed better lodging resistance although they were 5–10 cm taller. F1 hybrids had significant positive correlations with the parental traits viz., yield (r = 0.446), tillering (r = 0.746), height (r = 0.810) and flowering (r = 0.843). Selection of parents among elite breeding lines on the basis of their per se yield performance, diverse origin and resistance to insects and diseases should give heterotic combination. Yield advantage of hybrids was due primarily to increase in number of spikelets per unit area even though tiller number was reduced. Grain weight was either the same or slightly higher. High yielding hybrids also showed significant heterosis and heterobeltiosis for total dry matter and harvest index. For commercial utilization of heterosis in rice, effective male sterility and fertility restoration systems are available and up to 45% natural outcrossing on male sterile lines has been observed. Consequently, F1 rice hybrid have been successfully developed and used in China. Prospects of developing hybrid rice varieties elsewhere appear bright especially in countries that have organized seed production, certification and distribution programs and where hybrid seed can be produced at a reasonable cost.  相似文献   

3.
该研究以耐热型水稻品种Nagina22和热敏型水稻品种YR343为供试材料,采用盆栽试验,设置喷施清水+常温处理(NT0)、喷施清水+穗分化期高温胁迫(HT0),以及分别喷施5、10、15、20 mmol·L-1外源海藻糖+高温胁迫(分别记为HT1、HT2、HT3、HT4)共6个处理,分析外源海藻糖对高温胁迫下穗分化期水稻叶片叶绿素含量、光合气体交换参数、抗氧化酶活性、渗透调节物质含量、活性氧含量等生理特性,以及籽粒产量及其构成因素的影响,为水稻抗热栽培和耐热品种的选育提供理论依据。结果表明:(1)在高温胁迫下水稻穗分化期,2个水稻品种叶片的叶绿素含量、光合气体交换参数及渗透调节物质含量均降低,叶片MDA和H2O2含量以及■的产生速率均上升,叶片抗氧化酶活性呈先增后降的趋势,最终显示水稻籽粒产量及其构成因素显著下降。(2)喷施外源海藻糖能显著增加高温胁迫下穗分化期水稻的每穗粒数、千粒重和结实率,从而提高籽粒产量,其中弱势粒千粒重和结实率的增幅高于强势粒,外源海藻糖最适喷施浓度为15 mmol·L-1...  相似文献   

4.
Glutinous Rice and Its Importance for Hill Farmers in Laos. Economic Botany, 50(4): 401-408. 1996. Glutinous or waxy rice is the most important crop for subsistence farming economies in the hills of Northern Laos. Hill farmers continue to use traditional varieties only. Geographical and political isolation have contributed towards their preservation. Traditional varieties are mainly of the japonica type, have a good yield potential, are well adapted to the local conditions, and represent a wide genetic diversity. Farmers interviewed prefer varieties with large panicles, planted 2.7 varieties on average, with 17, 30 and 53% of the area planted to early, medium and late varieties, respectively. Out of 544 traditional cultivars 95% flowered within 88–120 days after planting. Crops planted together with rice in order of importance are: maize, cucumber, chili, taro, and sesame. Farmers reported annual milled rice production of 125 kg per capita and rice self-sufficiency for 8 months for 1992 and 1993. Maize, cassava, and products from the forest are major rice substitutes and food security in remote areas could best be improved by increasing production of maize and cassava in combination with livestock production systems.  相似文献   

5.
Crop improvement in terms of yield is rarely linked to leaf photosynthesis. However, in certain crop plants such as rice, it is predicted that an increase in photosynthetic rate will be required to support future grain yield potential. In order to understand the relationships between yield improvement and leaf photosynthesis, controlled environment conditions were used to grow 10 varieties which were released from the International Rice Research Institute (IRRI) between 1966 and 1995 and one newly developed line. Two growth light intensities were used: high light (1500 micromol m(-2) s(-1)) and low light (300 micromol m(-2) s(-1)). Gas exchange, leaf protein, chlorophyll, and leaf morphology were measured in the ninth leaf on the main stem. A high level of variation was observed among high light-grown plants for light-saturated photosynthetic rate per unit leaf area (P(max)), stomatal conductance (g), content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), and total leaf protein content. Notably, between 1966 and 1980 there was a decline in P(max), g, leaf protein, chlorophyll, and Rubisco content. Values recovered in those varieties released after 1980. This striking trend coincides with a previous published observation that grain yield in IRRI varieties released prior to 1980 correlated with harvest index whereas that for those released after 1980 correlated with biomass. P(max) showed significant correlations with both g and Rubisco content. Large differences were observed between high light- and low light-grown plants (photoacclimation). The photoacclimation 'range' for P(max) correlated with P(max) in high light-grown plants. It is concluded that (i) leaf photosynthesis may be systematically affected by breeding strategy; (ii) P(max) is a useful target for yield improvements where yield is limited by biomass production rather than partitioning; and (iii) the capacity for photoacclimation is related to high P(max) values.  相似文献   

6.
Brown planthopper (BPH) [Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)] is a major pest in rice [Oryza sativa L. (Poaceae)] production. Identification of resistance genes and development of BPH‐resistant varieties is an economical and effective way to control this pest. In this study, BPH honeydew excretion, survival rate, and emergence rate were used as indicators to detect the antibiotic level, whereas the relative growth rates of plant height (RH) and fresh weight (RW), and the number of days until yellowing were used to identify the level of tolerance to BPH in rice varieties. Rice varieties Swarnalata and B5, which showed high levels of antibiosis and tolerance to BPH, thus were highly resistant in the seedling bulk test; Mudgo and T12, which showed moderate resistance to the insects, had a high level of tolerance and moderate antibiosis to BPH. Varieties Rathu Heenati, ARC 10550, and Chin Saba were identified to be susceptible to BPH, showing a moderate level of tolerance and no antibiosis. In comparison to the evaluation methods of BPH resistance, the honeydew excretion and survival rate could be used to detect the antibiotic level, and the RH, RW, or leaf yellowing days could be employed as indicators to evaluate the rice varieties’ tolerance. Overall, a combined application of these indicators can effectively identify the levels of antibiosis and tolerance to BPH in rice varieties, and BPH‐resistance levels of the varieties were mainly determined by the antibiosis level. The results should help in understanding BPH‐resistance categories of rice varieties and for resistance breeding.  相似文献   

7.
The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES‐Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (?22.1% and ?35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES‐Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system.  相似文献   

8.
Rice is a staple food for nearly half of the world's population, but rice paddies constitute a major source of anthropogenic CH4 emissions. Root exudates from growing rice plants are an important substrate for methane‐producing microorganisms. Therefore, breeding efforts optimizing rice plant photosynthate allocation to grains, i.e., increasing harvest index (HI), are widely expected to reduce CH4 emissions with higher yield. Here we show, by combining a series of experiments, meta‐analyses and an expert survey, that the potential of CH4 mitigation from rice paddies through HI improvement is in fact small. Whereas HI improvement reduced CH4 emissions under continuously flooded (CF) irrigation, it did not affect CH4 emissions in systems with intermittent irrigation (II). We estimate that future plant breeding efforts aimed at HI improvement to the theoretical maximum value will reduce CH4 emissions in CF systems by 4.4%. However, CF systems currently make up only a small fraction of the total rice growing area (i.e., 27% of the Chinese rice paddy area). Thus, to achieve substantial CH4 mitigation from rice agriculture, alternative plant breeding strategies may be needed, along with alternative management.  相似文献   

9.
What it will take to Feed 5.0 Billion Rice consumers in 2030   总被引:22,自引:0,他引:22  
Major advances have occurred in rice production due to adoption of green revolution technology. Between 1966 and 2000, the population of densely populated low income countries grew by 90% but rice production increased by 130% from 257 million tons in 1966 to 600 million tons in 2000. However, the population of rice consuming countries continues to grow and it is estimated that we will have to produce 40 more rice in 2030. This increased demand will have to be met from less land, with less water, less labor and fewer chemicals. To meet the challenge of producing more rice from suitable lands we need rice varieties with higher yield potential and greater yield stability. Various strategies for increasing the rice yield potential being employed include: (1) conventional hybridization and selection procedures, (2) ideotype breeding, (3) hybrid breeding, (4) wide hybridization and (5) genetic engineering. Various conventional and biotechnology approach are being employed to develop durable resistance to diseases and insect and for tolerance to abiotic stresses. The availability of the rice genome sequence will now permit identification of the function of each of 60,000 rice genes through functional genomics. Once the function of a gene is identified, it will be possible to develop new rice varieties by introduction of the gene through traditional breeding in combination with marker aided selection or direct engineering of genes into rice varieties.  相似文献   

10.
直播旱作水稻的吸氮特征与土壤氮素表观盈亏   总被引:10,自引:1,他引:9  
水稻旱作是水稻节水栽培中最有效的方式。通过田间试验研究旱作直播条件下水稻对氮素的吸收利用特征以及土壤矿质氮的动态变化 ,并对土壤氮素的表观盈亏量进行了估算。结果表明 ,直播旱作水稻较水作水稻更注重中后期对氮素养分的吸收 ,尤其是对土壤氮素的吸收 ;幼穗分化后水稻的土壤吸氮量占阶段吸氮总量的 6 9.5 % ,比水作水稻多 17.8%。对 0~ 4 0 cm土层土壤矿质氮含量时空变化的研究表明 ,直播旱作水稻生育前期土壤表层矿质态氮大量累积 ,在灌水和降雨的影响下 ,向下层的迁移增加 ,基肥施用后裸地处理 2 0~ 4 0 cm土层的矿质氮高达 10 4 kg N/hm2 。对水稻各生育期土壤氮素盈亏的计算结果表明 ,自分蘖盛期后旱作各处理都表现出土壤氮素不同程度上的表观亏缺 ,然而就全生育期土壤氮素盈余量而言 ,旱作处理平均高达 12 7kg N/hm2 ,生育前期氮肥的大量投入是氮素盈余的主要原因。本试验结果表明 ,直播旱作水稻生育前期对施用的肥料氮吸收很少 ,提高直播旱作水稻氮肥利用效率的关键在于减少生育前期肥料氮的投入  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号