首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
We examined intramuscular endomysial collagen, cross-linking, and advanced glycation end products, as well as the general and contractile protein concentration of 20 young (25 +/- 3 yr) and 22 old (78 +/- 6 yr, range: 70-93 yr) sedentary men and women to better understand the underlying basis of changes in skeletal muscle mass and function that occur with aging. The old individuals had an impaired ability (increased time) (P < 0.05) to climb stairs (80%), rise from a chair (56%), and walk (44%), as well as lower (P < 0.05) quadriceps muscle volume (-29%), muscle strength (-35%), muscle power (-48%), and strength (-17%) and power (-33%) normalized to muscle size. Vastus lateralis muscle biopsies revealed that intramuscular endomysial collagen (young: 9.6 +/- 1.1, old: 10.2 +/- 1.2 microg/mg muscle wet wt) and collagen cross-linking (hydroxylysylpyridinoline) (young: 395 +/- 65, old: 351 +/- 45 mmol hydroxylysylpyridinoline/mol collagen) were unchanged (P > 0.05) with aging. The advanced glycation end product, pentosidine, was increased (P < 0.05) by approximately 200% (young: 5.2 +/- 1.3, old: 15.9 +/- 4.5 mmol pentosidine/mol collagen) with aging. While myofibrillar protein concentration was lower (-5%, P < 0.05), the concentration of the main contractile proteins myosin and actin were unchanged (P > 0.05) with aging. These data suggest that the synthesis and degradation of proteins responsible for the generation (myosin and actin) and transfer (collagen and pyridinoline cross-links) of muscle force are tightly regulated in aging muscle. Glycation-related cross-linking of intramuscular connective tissue may contribute to altered muscle force transmission and muscle function with healthy aging.  相似文献   

2.
The slowly metabolized proteins of the extracellular matrix, typically collagen and elastin, accumulate reactive metabolites through uncontrolled non-enzymatic reactions such as glycation or the products arising from the reaction of unsaturated long chain fatty acid metabolites (possessing aldehydic groups). A typical example of these non-enzymatic changes is the formation of advanced glycation end-products (AGEs), resulting from the reaction of carbohydrates with the free amino group of proteins. The accumulation of AGEs and the resulting structural alterations cause altered tissue properties (increased stiffness, reduced elasticity) that contribute to their reduced catabolism and to their aging. Posttranslational nonenzymatic modifications of the proteins of the extracellular matrix (the formation of a typical AGE product - pentosidine) were studied in three types of tissue of three rat strains subjected to a high-fructose diet. Chronic (three-week) hyperglycemia (resulting from fructose loading) caused a significant increase in pentosidine concentration mainly in the aorta and skin of the three rat strains (Lewis, Wistar and hereditary hypertriglyceridemic rats).  相似文献   

3.
Collagen deposits in fibrotic lesions often display elevated levels of hydroxyallysine (pyridinoline) cross-links. The relation between the occurrence of pyridinoline cross-links and the irreversibility of fibrosis suggests that these cross-links contribute to the aberrant accumulation of collagen. Based on its inhibitory effect on lysyl hydroxylase activity minoxidil has been postulated to possess anti-fibrotic properties by limiting the hydroxylysine supply for hydroxyallysine cross-linking. However, to interfere with hydroxyallysine cross-linking specifically lysyl hydroxylation of the collagen telopeptide should be inhibited, a reaction predominantly catalysed by lysyl hydroxylase (LH) 2b. In this study, we demonstrate that minoxidil treatment of cultured fibroblasts reduces LH1>LH2b>LH3 mRNA levels dose-and time-dependently, but has essentially no effect on the total number of pyridinoline cross-links in the collagen matrix. Still the collagen produced in the presence of minoxidil displays some remarkable features: hydroxylation of triple helical lysine residues is reduced to 50% and lysylpyridinoline cross-linking is increased at the expense of hydroxylysylpyridinoline cross-linking. These observations can be explained by our finding that LH1 mRNA levels are the most sensitive to minoxidil treatment, corroborating that LH1 has a preference for triple helical lysine residues as substrate. In addition, the non-proportional increase in cross-links (20-fold) with respect to the decrease in lysyl hydroxylation state of the triple helix (2-fold) even suggests that LH1 preferentially hydroxylates triple helical lysine residues at the cross-link positions. We conclude that minoxidil is unlikely to serve as an anti-fibroticum, but confers features to the collagen matrix, which provide insight into the substrate specificity of LH1.  相似文献   

4.
The hallmark of fibrotic processes is an excessive accumulation of collagen. The deposited collagen shows an increase in pyridinoline cross-links, which are derived from hydroxylated lysine residues within the telopeptides. This change in cross-linking is related to irreversible accumulation of collagen in fibrotic tissues. The increase in pyridinoline cross-links is likely to be the result of increased activity of the enzyme responsible for the hydroxylation of the telopeptides (telopeptide lysyl hydroxylase, or TLH). Although the existence of TLH has been postulated, the gene encoding TLH has not been identified. By analyzing the genetic defect of Bruck syndrome, which is characterized by a pyridinoline deficiency in bone collagen, we found two missense mutations in exon 17 of PLOD2, thereby identifying PLOD2 as a putative TLH gene. Subsequently, we investigated fibroblasts derived from fibrotic skin of systemic sclerosis (SSc) patients and found that PLOD2 mRNA is highly increased indeed. Furthermore, increased pyridinoline cross-link levels were found in the matrix deposited by SSc fibroblasts, demonstrating a clear link between mRNA levels of the putative TLH gene (PLOD2) and the hydroxylation of lysine residues within the telopeptides. These data underscore the significance of PLOD2 in fibrotic processes.  相似文献   

5.
The cranial skeleton of the lamprey, a primitive vertebrate, consists of cartilaginous structures that differ from vertebrate cartilages in having a noncollagenous extracellular matrix. Novel matrix proteins found in these cartilages include lamprin in the annular cartilage and an unidentified protein in the branchial cartilages. Both show biochemical similarities to elastin. The inextractability of these proteins, even to chemical cleavage by cyanogen bromide, indicates a polymer with extensive covalent cross-linking. Here we report on the type of cross-linking. Lysyl pyridinoline was found in high concentration in the elastin-like protein of lamprey branchial cartilage at a ratio of 7:1 to hydroxylysyl pyridinoline, the form that dominates in vertebrate collagens. Both forms of pyridinoline cross-link were absent from annular cartilage and desmosine cross-links, which are characteristic of vertebrate elastin, were not detected in either form of lamprey cartilage. Pyridinoline cross-links are considered to be characteristic of collagen, so their presence in an elastin-like protein in a primitive cartilage poses evolutionary questions about the tissue, the protein, and the cross-linking mechanism.  相似文献   

6.
The aim of this experiment was to identify the location of the biochemical changes associated with depressed mineralization during space flight. We carried out biochemical analysis of 4 sections of the femoral diaphyses from 107 day old male rats flown aboard Cosmos 2044 Biosatellite for 16 days. Control femurs were preflight, vivarium, synchronous for feed, cage and temperature exposure, and a flight simulation model. Distal sections in both the flight and synchronous femurs showed mineral deficits associated with reduced levels of the reducible cross-link product of type I collagen, dehydro-dihydroxylysinonorleucine (deH-DHLNL) (p<.05). Unloaded bones in the ground based flight simulation model showed changes in cross-links similar to flight and synchronous controls, but were not associated with the mineral deficit. Mean values of elements measured in each section of all groups revealed significant associations (p<.005) between the non-collagenous protein, osteocalcin and calcium (r=0.774), phosphorus (r=-.624) and deH-DHLNL/deH-HLNL (r=.883). The ratio of the nonreducible cross-link, pyridinoline, to its lysl analogue, deoxypyridinoline, was consistently lower in the distal than proximal sections of the groups tested. None of the changes during space flight were unique to flight bone. The most significant and extensive changes in bone composition, i.e. mineral deficits associated with changes in both osteocalcin and reducible cross-links, were located in the distal section of the diaphysis of the femur.  相似文献   

7.
In this study we have investigated whether proteoglycans (aggrecan) are modified by nonenzymatic glycation as in collagen. Purified human aggrecan from osteoarthritic and normal human knee articular cartilage was assayed for pentosidine, a cross-link formed by nonenzymatic glycation, using reverse-phase HPLC. In addition, an in vitro study was done by incubation of purified bovine nasal cartilage aggrecan with ribose. Pentosidine was found in all the purified human aggrecan samples. 2-3% of the total articular cartilage pentosidine was found in aggrecan. Purified link protein also contained penosidine. The in vitro study led to pentosidine formation, but did not appear to increase the molecular size of the aggrecan suggesting that pentosidine was creating intramolecular cross-links. Similar amounts of glycation were found in osteoarthritic and normal cartilage. Like collagen, aggrecan and link proteins are crosslinked by nonenzymatic glycation in normal and osteoarthritic cartilage. Crosslinking could be reproduced, in vitro, by incubating aggrecan with ribose. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Although bone-tissue stiffness is closely related to the degree to which bone has been mineralized, other determinants are yet to be identified. We, therefore, examined the extent to which the mineralization degree, collagen, and its cross-links are related to bone-tissue stiffness. A total of 50 cancellous and cortical bone samples were derived from the right mandibular condyles of five young and five adult female pigs. The degree of mineralization of bone (DMB) was assessed using micro-computed tomography. Using high-performance liquid chromatography, we quantified the collagen content and the number of cross-links per collagen molecule of two enzymatic cross-links: hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), and one non-enzymatic cross-link: pentosidine (Pen). Nanoindentation was used to assess bone-tissue stiffness in three directions, and multiple linear regressions were used to calculate the correlation between collagen properties and bone-tissue stiffness, with the DMB as first predictor. Whereas the bone-tissue stiffness of cancellous bone did not differ between the three directions of nanoindentation, or between the two age groups, cortical bone-tissue stiffness was higher in the adult tissue. After correction for DMB, the cross-links studied did not increase the explained variance. In the young group, however, LP significantly improved the explained variance in bone-tissue stiffness. Approximately half of the variation in bone-tissue stiffness in cancellous and cortical bone was explained by the DMB and the LP cross-links and thus they cannot be considered the sole determinants of the bone-tissue stiffness.  相似文献   

9.
During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1-A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol x (g of protein)(-1) x year(-1). Using previously reported protein turnover rate constants (k(T)) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (k(F)) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009-13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81+/-0.25 compared with 3.71+/-0.26 micromol of pentosidine x (mol of lysine)(-1) x year(-1) respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year(-1) compared with 0.134 year(-1) for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective k(F) values of 1.81+/-0.25 and 3.18+/-0.37 micromol of pentosidine.(mol of lysine)(-1) x year(-1). We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage. Correlation of pentosidine accumulation with protein half-life in both normal and degenerate discs further supports this finding.  相似文献   

10.
Histological characterization of spinal fusions in Atlantic salmon (Salmo salar) has demonstrated shape alterations of vertebral body endplates, a reduced intervertebral space, and replacement of intervertebral cells by ectopic bone. However, the significance of the notochord during the fusion process has not been addressed. We have therefore investigated structural and cellular events in the notochord during the development of vertebral fusions. In order to induce vertebral fusions, Atlantic salmon were exposed to elevated temperatures from fertilization until they attained a size of 15 g. Based on results from radiography, intermediate and terminal stages of the fusion process were investigated by immunohistochemistry and real-time quantitative polymerase chain reaction. Examination of structural extracellular matrix proteins such as Perlecan, Aggrecan, Elastin, and Laminin revealed reduced activity and reorganization at early stages in the pathology. Staining for elastic fibers visualized a thinner elastic membrane surrounding the notochord of developing fusions, and immunohistochemistry for Perlecan showed that the notochordal sheath was stretched during fusion. These findings in the outer notochord correlated with the loss of Aggrecan- and Substance-P-positive signals and the further loss of vacuoles from the chordocytes in the central notochord. At more progressed stages of fusion, chordocytes condensed, and the expression of Aggrecan and Substance P reappeared. The hyperdense regions seem to be of importance for the formation of notochordal tissue into bone. Thus, the remodeling of notochord integrity by reduced elasticity, structural alterations, and cellular changes is probably involved in the development of vertebral fusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号