首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The genus Equus is unusual in that five of the ten extant species have documented centric fission (Robertsonian translocation) polymorphisms within their populations, namely E. hemionus onager, E. hemionus kulan, E. kiang, E. africanus somaliensis, and E. quagga burchelli. Here we report evidence that the polymorphism involves the same homologous chromosome segments in each species, and that these chromosome segments have homology to human chromosome 4 (HSA4). Bacterial artificial chromosome clones containing equine genes SMARCA5 (ECA2q21 homologue to HSA4q31. 21) and UCHL1 (ECA3q22 homologue to HSA4p13) were mapped to a single metacentric chromosome and two unpaired acrocentrics by FISH mapping for individuals possessing odd numbers of chromosomes. These data suggest that the polymorphism is either ancient and conserved within the genus or has occurred recently and independently within each species. Since these species are separated by 1-3 million years of evolution, this polymorphism is remarkable and worthy of further investigations.  相似文献   

2.
Multidirectional chromosome painting with probes derived from flow-sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, and slow lorises (Nycticebus coucang, NCO, 2n = 50). In total, the 22 human autosomal painting probes detected 40 homologous chromosomal segments in the slow loris genome. The genome of the slow loris contains 16 sytenic associations of human homologues. The ancient syntenic associations of human chromosomes such as HSA 3/21, 7/16, 12/22 (twice), and 14/15, reported in most mammalian species, were also present in the slow loris genome. Six associations (HSA 1a/19a, 2a/12a, 6a/14b, 7a/12c, 9/15b, and 10a/19b) were shared by the slow loris and galago. Five associations (HSA 1b/6b, 4a/5a, 11b/15a, 12b/19b, and 15b/16b) were unique to the slow loris. In contrast, 30 homologous chromosome segments were identified in the slow loris genome when using galago chromosome painting probes. The data showed that the karyotypic differences between these two species were mainly due to Robertsonian translocations. Reverse painting, using galago painting probes onto human chromosomes, confirmed most of the chromosome homologies between humans and galagos established previously, and documented the HSA 7/16 association in galagos, which was not reported previously. The presence of the HSA 7/16 association in the slow loris and galago suggests that the 7/16 association is an ancestral synteny for primates. Based on our results and the published homology maps between humans and other primate species, we propose an ancestral karyotype (2n = 60) for lorisiform primates.  相似文献   

3.
Vespertilionidae is the largest chiropteran family that comprises species of different specialization and wide geographic distribution. Up to now, only a few vespertilionid species have been studied by molecular cytogenetic approaches. Here, we have investigated the karyotypic relationships of 4 Vespertilionidae species from Siberia by G-banding and comparative chromosome painting. Painting probes from Aselliscus stoliczkanus were used to establish interspecific homologous chromosomal segments in Myotis dasycneme (2n = 44), Murina hilgendorfi (2n = 44), Plecotus auritus (2n = 32), and Vespertilio murinus (2n = 38). Robertsonian translocations and a few inversions differentiated the karyotypes of the examined species. Painting of P. auritus karyotype with human probes revealed 3 previously undetected cryptic segments homologous to human chromosomes (Homo sapiens, HSA) 8, 15, and 19, respectively. As a consequence, the existence of 2 HSA 4 + 8 syntenies in the P. auritus karyotype has been proven. In addition, a pericentric inversion or centromere shift was revealed on the smallest metacentric P. auritus chromosome 16/17 using the HSA 16 probe explaining the different G-banding pattern in comparison to the homologous Myotis chromosome 16/17.  相似文献   

4.
Mitochondrial DNA evolution in the genus Equus   总被引:7,自引:0,他引:7  
Employing mitochondrial DNA (mtDNA) restriction-endonuclease maps as the basis of comparison, we have investigated the evolutionary affinities of the seven species generally recognized as the genus Equus. Individual species' cleavage maps contained an average of 60 cleavage sites for 16 enzymes, of which 29 were invariant for all species. Based on an average divergence rate of 2%/Myr, the variation between species supports a divergence of extant lineages from a common ancestor approximately 3.9 Myr before the present. Comparisons of cleavage maps between Equus przewalskii (Mongolian wild horse) and E. caballus (domestic horse) yielded estimates of nucleotide sequence divergence ranging from 0.27% to 0.41%. This range was due to intraspecific variation, which was noted only for E. caballus. For pairwise comparisons within this family, estimates of sequence divergence ranged from 0% (E. hemionus onager vs. E. h. kulan) to 7.8% (E. przewalskii vs. E. h. onager). Trees constructed according to the parsimony principle, on the basis of 31 phylogenetically informative restriction sites, indicate that the three extant zebra species represent a monophyletic group with E. grevyi and E. burchelli antiquorum diverging most recently. The phylogenetic relationships of E. africanus and E. hemionus remain enigmatic on the basis of the mtDNA analysis, although a recent divergence is unsupported.   相似文献   

5.
High-resolution physically ordered gene maps for equine homologs of human chromosome 5 (HSA5), viz., horse chromosomes 14 and 21 (ECA14 and ECA21), were generated by adding 179 new loci (131 gene-specific and 48 microsatellites) to the existing maps of the two chromosomes. The loci were mapped primarily by genotyping on a 5000-rad horse x hamster radiation hybrid panel, of which 28 were mapped by fluorescence in situ hybridization. The approximately fivefold increase in the number of mapped markers on the two chromosomes improves the average resolution of the map to 1 marker/0.9 Mb. The improved resolution is vital for rapid chromosomal localization of traits of interest on these chromosomes and for facilitating candidate gene searches. The comparative gene mapping data on ECA14 and ECA21 finely align the chromosomes to sequence/gene maps of a range of evolutionarily distantly related species. It also demonstrates that compared to ECA14, the ECA21 segment corresponding to HSA5 is a more conserved region because of preserved gene order in a larger number of and more diverse species. Further, comparison of ECA14 and the distal three-quarters region of ECA21 with corresponding chromosomal segments in 50 species belonging to 11 mammalian orders provides a broad overview of the evolution of these segments in individual orders from the putative ancestral chromosomal configuration. Of particular interest is the identification and precise demarcation of equid/Perissodactyl-specific features that for the first time clearly distinguish the origins of ECA14 and ECA21 from similar-looking status in the Cetartiodactyls.  相似文献   

6.
Using human chromosome painting probes, we looked for homologies between human and mountain zebra (Equus zebra hartmannae, Equidae, Perissodactyla) karyotypes. Except for two very short segments, all euchromatic regions were found to have a human homologous chromosome segment. Conserved syntenies previously described in various mammalian orders were detected. Each synteny corresponded to a chromosomal region homologous to two parts of human chromosomes: HSA3 and HSA21, HSA7 and HSA16, HSA12 and HSA22, and HSA16 and HSA19. Chromosomal segments homologous to a part of HSA11 and HSA19p are found syntenic in zebra, horse and donkey, suggesting that this group of synteny has been inherited from an Equidae or Perissodactyla common ancestor. A synteny of segments homologous to parts of HSA4 and HSA8 was observed in zebra and horse. It also exists in the rabbit (Lagomorpha) and several Carnivora species. A second group of taxa which does not have this region of synteny is composed of primates, Chiroptera and Insectivora, and possibly also Cetacea and Scandantia. Thus, the presence or absence of this region of synteny may separate two groups of eutherian mammals.  相似文献   

7.
A medium-density map of the horse genome (Equus caballus) was constructed using genes evenly distributed over the human genome. Three hundred and twenty-three exonic primer pairs were used to screen the INRA and the CHORI-241 equine BAC libraries by polymerase chain reaction and by filter hybridization respectively. Two hundred and thirty-seven BACs containing equine gene orthologues, confirmed by sequencing, were isolated. The BACs were localized to horse chromosomes by fluorescent in situ hybridization (FISH). Overall, 165 genes were assigned to the equine genomic map by radiation hybrid (RH) (using an equine RH(5000) panel) and/or by FISH mapping. A comparison of localizations of 713 genes mapped on the horse genome and on the human genome revealed 59 homologous segments and 131 conserved segments. Two of these homologies (ECA27/HSA8 and ECA12p/HSA11p) had not been previously identified. An enhanced resolution of conserved and rearranged chromosomal segments presented in this study provides clarification of chromosome evolution history.  相似文献   

8.
Przewalski's wild horse (E. przewalskii, EPR) has a diploid chromosome number of 2n = 66 while the domestic horse (E. caballus, ECA) has a diploid chromosome number of 2n = 64. Discussions about their phylogenetic relationship and taxonomic classification have hinged on comparisons of their skeletal morphology, protein and mitochondrial DNA similarities, their ability to produce fertile hybrid offspring, and on comparison of their chromosome morphology and banding patterns. Previous studies of GTG-banded karyotypes suggested that the chromosomes of both equids were homologous and the difference in chromosome number was due to a Robertsonian event involving two pairs of acrocentric chromosomes in EPR and one pair of metacentric chromosomes in ECA (ECA5). To determine which EPR chromosomes were homologous to ECA5 and to confirm the predicted chromosome homologies based on GTG banding, we constructed a comparative gene map between ECA and EPR by FISH mapping 46 domestic horse-derived BAC clones containing genes previously mapped to ECA chromosomes. The results indicated that all ECA and EPR chromosomes were homologous as predicted by GTG banding, but provide new information in that the EPR acrocentric chromosomes EPR23 and EPR24 were shown to be homologues of the ECA metacentric chromosome ECA5.  相似文献   

9.
Functional bone microstructure of long limb bones is a function of species-specific biomechanical properties such as locomotion and weight. Histomorphometry and statistics were used to identify various primate species (Hylobates moloch, Pongo satyrus borneensis, Pan tr. troglodytes, Gorilla g. gorilla, Homo sapiens), equid species (Equus caballus, Equus asinus, Equus mulus, Equus hemionus kulan, Equus ferus przewalskii) and also extinct horses e.g. iron age, medieval and neolithic forms on the microstructural level. Furthermore, bones from domesticated cattle, their Neolithic forms, pigs, sheep and goats (Bos taurus, Sus scrofa, Ovis aries, Capra hircus) were examined. Thin sections from proximal metacarpi or radii per species were taken in case of the domesticated animals and from distal humeri in case of the primates. Areas, perimeters, minimal and maximal axis of Haversian canals and secondary osteons were measured on digital images. Canonical discriminant analysis permits a differentiation of the species by these parameters of bone microstructure. Thus it is possible to distinguish between the different primate species, sheep and goats, horses, extinct horses, donkeys, mules and kulans on the microstructural level, however not between cattle and pig, E. f. przewalskii and Equus caballus, medieval and iron age horses. Neolithic cattle and horses do overlap, yet they are different from the modern forms.  相似文献   

10.
Skin surface lipids from Equus caballus, E. przewalskii, E. asinus, E. grevyi, E. hemionus onager and a mule (E. asinus/E. caballus) were analyzed in detail. In all species the surface lipid mixtures consisted of giant-ring lactones, cholesterol, cholesteryl esters and minor amounts of wax diesters. In E. caballus, the lactone hydroxyacids were entirely branched chained, while in E. asinus and E. grevyi they were almost exclusively straight chained. In E. przewalskii, the onager and the mule there were both straight and branched chain hydroxyacid lactones. These results are in harmony with published interpretations of the evolutionary relationships among Equus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号