首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

Subcellular localization of a new protein sequence is very important and fruitful for understanding its function. As the number of new genomes has dramatically increased over recent years, a reliable and efficient system to predict protein subcellular location is urgently needed.

Results

Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins based on amino acid composition. In this research, the proteins are classified into the following eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria, nucleus and peroxisome. We know subcellular localization is a typical classification problem; consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to construct the classifier. Unlike previous methods, ours considers the order information of protein sequences by a different method. Our method is tested in three subcellular localization predictions for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on Reinhardt's dataset. The results are then compared to several other methods. The total prediction accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are 100% by a self-consistency test and 87% by the jackknife test.

Conclusions

Our method represents a different approach for predicting protein subcellular localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool for predicting protein subcellular localizations in eukaryotic organisms.
  相似文献   

2.
MOTIVATION: Identifying the destination or localization of proteins is key to understanding their function and facilitating their purification. A number of existing computational prediction methods are based on sequence analysis. However, these methods are limited in scope, accuracy and most particularly breadth of coverage. Rather than using sequence information alone, we have explored the use of database text annotations from homologs and machine learning to substantially improve the prediction of subcellular location. RESULTS: We have constructed five machine-learning classifiers for predicting subcellular localization of proteins from animals, plants, fungi, Gram-negative bacteria and Gram-positive bacteria, which are 81% accurate for fungi and 92-94% accurate for the other four categories. These are the most accurate subcellular predictors across the widest set of organisms ever published. Our predictors are part of the Proteome Analyst web-service.  相似文献   

3.
MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.  相似文献   

4.
5.
Gram-negative bacteria have five major subcellular localization sites: the cytoplasm, the periplasm, the inner membrane, the outer membrane, and the extracellular space. The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. We present an approach to predict subcellular localization for Gram-negative bacteria. This method uses the support vector machines trained by multiple feature vectors based on n-peptide compositions. For a standard data set comprising 1443 proteins, the overall prediction accuracy reaches 89%, which, to the best of our knowledge, is the highest prediction rate ever reported. Our prediction is 14% higher than that of the recently developed multimodular PSORT-B. Because of its simplicity, this approach can be easily extended to other organisms and should be a useful tool for the high-throughput and large-scale analysis of proteomic and genomic data.  相似文献   

6.
Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ∼10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/.  相似文献   

7.
Here we report a systematic approach for predicting subcellular localization (cytoplasm, mitochondrial, nuclear, and plasma membrane) of human proteins. First, support vector machine (SVM)-based modules for predicting subcellular localization using traditional amino acid and dipeptide (i + 1) composition achieved overall accuracy of 76.6 and 77.8%, respectively. PSI-BLAST, when carried out using a similarity-based search against a nonredundant data base of experimentally annotated proteins, yielded 73.3% accuracy. To gain further insight, a hybrid module (hybrid1) was developed based on amino acid composition, dipeptide composition, and similarity information and attained better accuracy of 84.9%. In addition, SVM modules based on a different higher order dipeptide i.e. i + 2, i + 3, and i + 4 were also constructed for the prediction of subcellular localization of human proteins, and overall accuracy of 79.7, 77.5, and 77.1% was accomplished, respectively. Furthermore, another SVM module hybrid2 was developed using traditional dipeptide (i + 1) and higher order dipeptide (i + 2, i + 3, and i + 4) compositions, which gave an overall accuracy of 81.3%. We also developed SVM module hybrid3 based on amino acid composition, traditional and higher order dipeptide compositions, and PSI-BLAST output and achieved an overall accuracy of 84.4%. A Web server HSLPred (www.imtech.res.in/raghava/hslpred/ or bioinformatics.uams.edu/raghava/hslpred/) has been designed to predict subcellular localization of human proteins using the above approaches.  相似文献   

8.
Predicting subcellular localization with AdaBoost Learner   总被引:1,自引:0,他引:1  
Protein subcellular localization, which tells where a protein resides in a cell, is an important characteristic of a protein, and relates closely to the function of proteins. The prediction of their subcellular localization plays an important role in the prediction of protein function, genome annotation and drug design. Therefore, it is an important and challenging role to predict subcellular localization using bio-informatics approach. In this paper, a robust predictor, AdaBoost Learner is introduced to predict protein subcellular localization based on its amino acid composition. Jackknife cross-validation and independent dataset test were used to demonstrate that Adaboost is a robust and efficient model in predicting protein subcellular localization. As a result, the correct prediction rates were 74.98% and 80.12% for the Jackknife test and independent dataset test respectively, which are higher than using other existing predictors. An online server for predicting subcellular localization of proteins based on AdaBoost classifier was available on http://chemdata.shu. edu.cn/sl12.  相似文献   

9.
Fan  Yetian  Tang  Xiwei  Hu  Xiaohua  Wu  Wei  Ping  Qing 《BMC bioinformatics》2017,18(13):470-21

Background

Essential proteins are indispensable to the survival and development process of living organisms. To understand the functional mechanisms of essential proteins, which can be applied to the analysis of disease and design of drugs, it is important to identify essential proteins from a set of proteins first. As traditional experimental methods designed to test out essential proteins are usually expensive and laborious, computational methods, which utilize biological and topological features of proteins, have attracted more attention in recent years. Protein-protein interaction networks, together with other biological data, have been explored to improve the performance of essential protein prediction.

Results

The proposed method SCP is evaluated on Saccharomyces cerevisiae datasets and compared with five other methods. The results show that our method SCP outperforms the other five methods in terms of accuracy of essential protein prediction.

Conclusions

In this paper, we propose a novel algorithm named SCP, which combines the ranking by a modified PageRank algorithm based on subcellular compartments information, with the ranking by Pearson correlation coefficient (PCC) calculated from gene expression data. Experiments show that subcellular localization information is promising in boosting essential protein prediction.
  相似文献   

10.
This paper presents a composite multi-layer classifier system for predicting the subcellular localization of proteins based on their amino acid sequence. The work is an extension of our previous predictor PProwler v1.1 which is itself built upon the series of predictors SignalP and TargetP. In this study we outline experiments conducted to improve the classifier design. The major improvement came from using Support Vector machines as a "smart gate" sorting the outputs of several different targeting peptide detection networks. Our final model (PProwler v1.2) gives MCC values of 0.873 for non-plant and 0.849 for plant proteins. The model improves upon the accuracy of our previous subcellular localization predictor (PProwler v1.1) by 2% for plant data (which represents 7.5% improvement upon TargetP).  相似文献   

11.
Mimicking cellular sorting improves prediction of subcellular localization   总被引:27,自引:0,他引:27  
Predicting the native subcellular compartment of a protein is an important step toward elucidating its function. Here we introduce LOCtree, a hierarchical system combining support vector machines (SVMs) and other prediction methods. LOCtree predicts the subcellular compartment of a protein by mimicking the mechanism of cellular sorting and exploiting a variety of sequence and predicted structural features in its input. Currently LOCtree does not predict localization for membrane proteins, since the compositional properties of membrane proteins significantly differ from those of non-membrane proteins. While any information about function can be used by the system, we present estimates of performance that are valid when only the amino acid sequence of a protein is known. When evaluated on a non-redundant test set, LOCtree achieved sustained levels of 74% accuracy for non-plant eukaryotes, 70% for plants, and 84% for prokaryotes. We rigorously benchmarked LOCtree in comparison to the best alternative methods for localization prediction. LOCtree outperformed all other methods in nearly all benchmarks. Localization assignments using LOCtree agreed quite well with data from recent large-scale experiments. Our preliminary analysis of a few entirely sequenced organisms, namely human (Homo sapiens), yeast (Saccharomyces cerevisiae), and weed (Arabidopsis thaliana) suggested that over 35% of all non-membrane proteins are nuclear, about 20% are retained in the cytosol, and that every fifth protein in the weed resides in the chloroplast.  相似文献   

12.
13.
Neural networks have been trained to predict the subcellular location of proteins in prokaryotic or eukaryotic cells from their amino acid composition. For three possible subcellular locations in prokaryotic organisms a prediction accuracy of 81% can be achieved. Assigning a reliability index, 33% of the predictions can be made with an accuracy of 91%. For eukaryotic proteins (excluding plant sequences) an overall prediction accuracy of 66% for four locations was achieved, with 33% of the sequences being predicted with an accuracy of 82% or better. With the subcellular location restricting a protein's possible function, this method should be a useful tool for the systematic analysis of genome data and is available via a server on the world wide web.  相似文献   

14.
现有蛋白质亚细胞定位方法针对水溶性蛋白质而设计,对跨膜蛋白并不适用。而专门的跨膜拓扑预测器,又不是为亚细胞定位而设计的。文章改进了跨膜拓扑预测器TMPHMMLoc的模型结构,设计了一个新的二阶隐马尔可夫模型;采用推广到二阶模型的Baum-Welch算法估计模型参数,并把将各个亚细胞位置建立的模型整合为一个预测器。数据集上测试结果表明,此方法性能显著优于针对可溶性蛋白设计的支持向量机方法和模糊k最邻近方法,也优于TMPHMMLoc中提出的隐马尔可夫模型方法,是一个有效的跨膜蛋白亚细胞定位预测方法。  相似文献   

15.
以500个茶(Camellia sinensis(L.)O.Ktze.)叶片的蛋白质作为数据集,比较TargetP、WoLF PSORT、LocTree和Plant-mPLoc 4种软件预测亚细胞定位的可信度和灵敏度。结果显示,4种软件预测可信度均高于80%,依次排序为TargetP > LocTree > WoLF PSORT > Plant-mPLoc。其中,LocTree对细胞质蛋白和分泌蛋白检测灵敏度最高,但对叶绿体蛋白灵敏度最低;Plant-mPLoc检测核蛋白最灵敏,但对细胞质蛋白最不敏感;TargetP检测叶绿体蛋白最灵敏,但仅能区分3个亚细胞器官;WoLF PSORT对分泌蛋白检测灵敏度最低,但对其他蛋白均较灵敏。基于上述结果,该研究针对4种软件提出了合理的使用建议。  相似文献   

16.
The ability to predict the subcellular localization of a protein from its sequence is of great importance, as it provides information about the protein's function. We present a computational tool, PredSL, which utilizes neural networks, Markov chains, profile hidden Markov models, and scoring matrices for the prediction of the subcellular localization of proteins in eukaryotic cells from the N-terminal amino acid sequence. It aims to classify proteins into five groups: chloroplast, thylakoid, mitochondrion, secretory pathway, and "other". When tested in a fivefold cross-validation procedure, PredSL demonstrates 86.7% and 87.1% overall accuracy for the plant and non-plant datasets, respectively. Compared with TargetP, which is the most widely used method to date, and LumenP, the results of PredSL are comparable in most cases. When tested on the experimentally verified proteins of the Saccharomyces cerevisiae genome, PredSL performs comparably if not better than any available algorithm for the same task. Furthermore, PredSL is the only method capable for the prediction of these subcellular localizations that is available as a stand-alone application through the URL: http://bioinformatics.biol.uoa.gr/PredSL/.  相似文献   

17.
Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.  相似文献   

18.
19.

Background

The functions of proteins are closely related to their subcellular locations. In the post-genomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means.

Results

This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by a cascaded fusion of cleavage site prediction and profile alignment. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor using the information in their N-terminal shorting signals. Then, the sequences are truncated at the cleavage site positions, and the shortened sequences are passed to PSI-BLAST for computing their profiles. Subcellular localization are subsequently predicted by a profile-to-profile alignment support-vector-machine (SVM) classifier. To further reduce the training and recognition time of the classifier, the SVM classifier is replaced by a new kernel method based on the perturbational discriminant analysis (PDA).

Conclusions

Experimental results on a new dataset based on Swiss-Prot Release 57.5 show that the method can make use of the best property of signal- and homology-based approaches and can attain an accuracy comparable to that achieved by using full-length sequences. Analysis of profile-alignment score matrices suggest that both profile creation time and profile alignment time can be reduced without significant reduction in subcellular localization accuracy. It was found that PDA enjoys a short training time as compared to the conventional SVM. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.
  相似文献   

20.
The attainment of complete map‐based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome‐scale subcellular prediction of encoded rice proteins. First, the support vector machine (SVM)‐based modules have been developed using traditional amino acid‐, dipeptide‐ (i+1) and four parts‐amino acid composition and achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity search‐based module has been developed using position‐specific iterated‐basic local alignment search tool and achieved 68.35% accuracy. Another module developed using evolutionary information of a protein sequence extracted from position‐specific scoring matrix achieved an accuracy of 87.10%. In this study, a large number of modules have been developed using various encoding schemes like higher‐order dipeptide composition, N‐ and C‐terminal, splitted amino acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on an independent set of rice proteins where it outperformed widely used prediction methods such as TargetP, Wolf‐PSORT, PA‐SUB, Plant‐Ploc and ESLpred. To assist the plant research community, an online web tool ‘RSLpred’ has been developed for subcellular prediction of query rice proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号