首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
BACKGROUND: The biological clock synchronizes the organism with the environment, responding to changes in light and temperature. Drosophila CRYPTOCHROME (CRY), a putative circadian photoreceptor, has previously been reported to interact with the clock protein TIMELESS (TIM) in a light-dependent manner. Although TIM dimerizes with PERIOD (PER), no association between CRY and PER has previously been revealed, and aspects of the light dependence of the TIM/CRY interaction are still unclear. RESULTS: Behavioral analysis of double mutants of per and cry suggested a genetic interaction between the two loci. To investigate whether this was reflected in a physical interaction, we employed a yeast-two-hybrid system that revealed a dimerization between PER and CRY. This was further supported by a coimmunoprecipitation assay in tissue culture cells. We also show that the light-dependent nuclear interactions of PER and TIM with CRY require the C terminus of CRY and may involve a trans-acting repressor. CONCLUSIONS: This study shows that, as in mammals, Drosophila CRY interacts with PER, and, as in plants, the C terminus of CRY is involved in mediating light responses. A model for the light dependence of CRY is discussed.  相似文献   

2.
Extraretinal photoreception is a common input route for light resetting signals into the circadian clock of animals. In Drosophila melanogaster, substantial circadian light inputs are mediated via the blue light photoreceptor CRYPTOCHROME (CRY) expressed in clock neurons within the brain. The current model predicts that, upon light activation, CRY interacts with the clock proteins TIMELESS (TIM) and PERIOD (PER), thereby inducing their degradation, which in turn leads to a resetting of the molecular oscillations within the circadian clock. Here the authors investigate the function of another putative extraretinal circadian photoreceptor, the Hofbauer-Buchner eyelet (H-B eyelet), located between the retina and the medulla in the fly optic lobes. Blocking synaptic transmission between the H-B eyelet and its potential target cells, the ventral circadian pacemaker neurons, impaired the flies' ability to resynchronize their behavior under jet-lag conditions in the context of nonfunctional retinal photoreception and a mutation in the CRY-encoding gene. The same manipulation also affected synchronized expression of the clock proteins TIM and PER in different subsets of the clock neurons. This shows that synaptic communication between the H-B eyelet and clock neurons contributes to synchronization of molecular and behavioral rhythms and confirms that the H-B eyelet functions as a circadian photoreceptor. Blockage of synaptic transmission from the H-B eyelet in the presence of functional compound eyes and the absence of CRY also results in increased numbers of flies that are unable to synchronize to extreme photoperiods, supplying independent proof for the role of the H-B eyelet as a circadian photoreceptor.  相似文献   

3.
4.
Drosophila CRY is a deep brain circadian photoreceptor   总被引:10,自引:0,他引:10  
cry (cryptochrome) is an important clock gene, and recent data indicate that it encodes a critical circadian photoreceptor in Drosophila. A mutant allele, cry(b), inhibits circadian photoresponses. Restricting CRY expression to specific fly tissues shows that CRY expression is needed in a cell-autonomous fashion for oscillators present in different locations. CRY overexpression in brain pacemaker cells increases behavioral photosensitivity, and this restricted CRY expression also rescues all circadian defects of cry(b) behavior. As wild-type pacemaker neurons express CRY, the results indicate that they make a striking contribution to all aspects of behavioral circadian rhythms and are directly light responsive. These brain neurons therefore contain an identified deep brain photoreceptor, as well as the other circadian elements: a central pace-maker and a behavioral output system.  相似文献   

5.
6.
7.
8.
Oscillations of the period (per) and timeless (tim) gene products are an integral part of the feedback loop that underlies circadian behavioral rhythms in Drosophila melanogaster. Resetting this loop in response to light requires the putative circadian photoreceptor cryptochrome (CRY). We dissected the early events in photic resetting by determining the mechanisms underlying the CRY response to light and by investigating the relationship between CRY and the light-induced ubiquitination of the TIM protein. In response to light, CRY is degraded by the proteasome through a mechanism that requires electron transport. Various CRY mutant proteins are not degraded, and this suggests that an intramolecular conversion is required for this light response. Light-induced TIM ubiquitination precedes CRY degradation and is increased when electron transport is blocked. Thus, inhibition of electron transport may "lock" CRY in an active state by preventing signaling required either to degrade CRY or to convert it to an inactive form. High levels of CRY block TIM ubiquitination, suggesting a mechanism by which light-driven changes in CRY could control TIM ubiquitination.  相似文献   

9.
Circadian clock genes are ubiquitously expressed in the nervous system and peripheral tissues of complex animals. While clock genes in the brain are essential for behavioral rhythms, the physiological roles of these genes in the periphery are not well understood. Constitutive expression of the clock gene period was reported in the ovaries of Drosophila melanogaster; however, its molecular interactions and functional significance remained unknown. This study demonstrates that period (per) and timeless (tim) are involved in a novel noncircadian function in the ovary. PER and TIM are constantly expressed in the follicle cells enveloping young oocytes. Genetic evidence suggests that PER and TIM interact in these cells, yet they do not translocate to the nucleus. The levels of TIM and PER in the ovary are affected neither by light nor by the lack of clock-positive elements Clock (Clk) and cycle (cyc). Taken together, these data suggest that per and tim are regulated differently in follicle cells than in clock cells. Experimental evidence suggests that a novel fitness-related phenotype may be linked to noncircadian expression of clock genes in the ovaries. Mated females lacking either per or tim show nearly a 50% decline in progeny, and virgin females show a similar decline in the production of mature oocytes. Disruption of circadian mechanism by either the depletion of TIM via constant light treatment or continuous expression of PER via GAL4/UAS expression system has no adverse effect on the production of mature oocytes.  相似文献   

10.
The clock protein PERIOD (PER) displays circadian cycles of accumulation, phosphorylation, nuclear translocation and degradation in Drosophila melanogaster clock cells. One exception to this pattern is in follicular cells enclosing previtellogenic ovarian egg chambers. In these cells, PER remains high and cytoplasmic at all times of day. Genetic evidence suggest that PER and its clock partner TIMELESS (TIM) interact in these cells, yet, they do not translocate to the nucleus. Here, we investigated the levels and subcellular localization of PER in older vitellogenic follicles. Cytoplasmic PER levels decreased in the follicular cells at the onset of vitellogenesis (stage 9). Interestingly, PER was observed in the nuclei of some follicular cells at this stage. PER signal disappeared in more advanced (stage 10) vitellogenic follicles. Since the phosphorylation state of PER is critical for the progression of circadian cycle, we investigated the status of PER phosphorylation in the ovary and the expression patterns of DOUBLETIME (DBT), a kinase known to affect PER in the clock cells. DBT was absent in previtellogenic follicular cells, but present in the cytoplasm of some stage 9 follicular cells. DBT was not distributed uniformly but was present in patches of adjacent cells, in a pattern resembling PER distribution at the same stage. Our data suggest that the absence of dbt expression in the follicular cells of previtellogenic egg chambers may be related to stable and cytoplasmic expression of PER in these cells. Onset of dbt expression in vitellogenic follicles coincides with nuclear localization of PER protein.  相似文献   

11.
In Drosophila melanogaster, disruption of night by even short light exposures results in degradation of the clock protein TIMELESS (TIM), leading to shifts in the fly molecular and behavioral rhythms. Several lines of evidence indicate that light entrainment of the brain clock involves the blue-light photoreceptor cryptochrome (CRY). In cryptochrome-depleted Drosophila (cry(b)), the entrainment of the brain clock by short light pulses is impaired but the clock is still entrainable by light-dark cycles, probably due to light input from the visual system. Whether cryptochrome and visual transduction pathways play a role in entrainment of noninnervated, directly photosensitive peripheral clocks is not known and the subject of this study. The authors monitored levels of the clock protein TIM in the lateral neurons (LNs) of larval brains and in the renal Malpighian tubules (MTs) of flies mutant for the cryptochrome gene (cry(b)) and in mutants that lack signaling from the visual photopigments (norpA(P41)). In cry(b) flies, light applied during the dark period failed to induce degradation of TIM both in MTs and in LNs, yet attenuated cycling of TIM was observed in both tissues in LD. This cycling was abolished in LNs, but persisted in MTs, of norpA(P41);cry(b) double mutants. Furthermore, the activity of the tim gene in the MTs of cry(b) flies, reported by luciferase, seemed stimulated by lights-on and suppressed by lights-off, suggesting that the absence of functional cryptochrome uncovered an additional light-sensitive pathway synchronizing the expression of TIM in this tissue. In constant darkness, cycling of TIM was abolished in MTs; however, it persisted in LNs of cry(b) flies. The authors conclude that cryptochrome is involved in TIM-mediated entrainment of both central LN and peripheral MT clocks. Cryptochrome is also an indispensable component of the endogenous clock mechanism in the examined peripheral tissue, but not in the brain. Thus, although neural and epithelial cells share the core clock mechanism, some clock components and light-entrainment pathways appear to have tissue-specific roles.  相似文献   

12.
13.
The clock gene machinery controls cellular metabolism, proliferation, and key functions, such as DNA damage recognition and repair. Dysfunction of the circadian clock is involved in tumorigenesis, and altered expression of some clock genes has been found in cancer patients. The aim of this study was to evaluate the expression levels of core clock genes in colorectal cancer (CRC). Quantitative real-time polymerase chain reaction (qPCR) was used to examine ARNTL1, CLOCK, PER1, PER2, PER3, CRY1, CRY2, Timeless (TIM), TIPIN, and CSNK1? expression levels in the tumor tissue and matched apparently healthy mucosa of CRC patients. In the tumor tissue of CRC patients, compared to their matched healthy mucosa, expression levels of ARNTL1 (p=.002), PER1 (p=.002), PER2 (p=.011), PER3 (p=.003), and CRY2 (p=.012) were lower, whereas the expression level of TIM (p=.044) was higher. No significant difference was observed in the expression levels of CLOCK (p=.778), CRY1 (p=.600), CSNK1 (p=.903), and TIPIN (p=.136). As to the clinical and pathological features, a significant association was found between low CRY1 expression levels in tumor mucosa and age (p=.026), and female sex (p=.005), whereas high CRY1 expression levels in tumor mucosa were associated with cancer location in the distal colon (p?=?.015). Moreover, high TIM mRNA levels in the tumor mucosa were prevalent whenever proximal lymph nodes were involved (p= .013) and associated with TNM stages III-IV (p=.005) and microsatellite instability (p=.015). Significantly poorer survival rates were evidenced for CRC patients with lower expression in the tumor tissue of PER1 (p=.010), PER3 (p= .010), and CSNKIE (p=.024). In conclusion, abnormal expression levels of core clock genes in CRC tissue may be related to the process of tumorigenesis and exert an influence on host/tumor interactions.  相似文献   

14.
The Drosophila circadian clock is an ideal model system for teasing out the molecular mechanisms of circadian behavior and the means by which animals synchronize to day-night cycles. The clock that drives behavioral rhythms, located in the lateral neurons in the central brain, consists of a feedback loop of the circadian genes period (per) and timeless (tim). The molecular cycle, roughly 24 h long, is constantly reset by the environment. This review focuses on the main input pathways of the dominant circadian zeitgeber, light. Light acts directly on the clock primarily through cryptochrome (cry), a deep brain blue-light photoreceptor. CRY activation causes rapid TIM degradation, which is a predicted means of resetting the clock both on a daily basis at dawn and on an acute basis following an entraining light pulse during the night hours. In the absence of cry, the clock can still be driven by photic input through the visual system, though the mechanisms underlying this entrainment are unclear. Temperature can also entrain the clock, although the mechanisms by which this occurs are also unclear.  相似文献   

15.
16.
17.
Cloning and expression of cryptochrome2 cDNA in the rat.   总被引:1,自引:0,他引:1  
Cryptochromes (CRY) are blue-light photoreceptors that regulate the circadian rhythm in animals and plants. In mammals, two types of CRY are involved in the regulation of circadian rhythm, but rat cryptochromes have not yet been identified. Therefore, we isolated and characterized cry2 cDNA from the rat brain. The cloned rat cry2 cDNA consists of 2,131 nucleotides and has a single open-reading frame that encodes the rat CRY2 of 594 amino acids with start and stop codons. The deduced amino acid sequence of the rat CRY2 was 97% identical with that of mice and 93% with humans, but it showed a relatively low identity of 64% with that of zebrafish. It also exhibited a high homology (about 70%) with CRY1 of mice and humans. A Northern blot analysis showed that rat cry2 was expressed in all of the tissues examined. Rat cry2 was expressed at a relatively higher level in peripheral tissues than in the brain. In situ hybridization in the whole brain indicated that the strong signal of cry2 mRNA is mainly present in the suprachiasmatic nucleus (SCN) region, but very weak in other brain regions. Therefore, present results indicate that rat cry2 may function in circadian photoreception in the rat brain.  相似文献   

18.
Saez L  Derasmo M  Meyer P  Stieglitz J  Young MW 《Genetics》2011,188(3):591-600
Regulated nuclear entry of the Period (PER) and Timeless (TIM) proteins, two components of the Drosophila circadian clock, is essential for the generation and maintenance of circadian behavior. PER and TIM shift from the cytoplasm to the nucleus daily, and the length of time that PER and TIM reside in the cytoplasm is an important determinant of the period length of the circadian rhythm. Here we identify a TIM nuclear localization signal (NLS) that is required for appropriately timed nuclear accumulation of both TIM and PER. Transgenic flies with a mutated TIM NLS produced circadian rhythms with a period of ~30 hr. In pacemaker cells of the brain, PER and TIM proteins rise to abnormally high levels in the cytoplasm of tim(ΔNLS) mutants, but show substantially reduced nuclear accumulation. In cultured S2 cells, the mutant TIM(ΔNLS) protein significantly delays nuclear accumulation of both TIM and wild-type PER proteins. These studies confirm that TIM is required for the nuclear localization of PER and point to a key role for the TIM NLS in the regulated nuclear accumulation of both proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号