首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 980 毫秒
1.
Monocarboxylate-H+ cotransporters, such as monocarboxylate transporter (MCT) SLC16A, have been suggested to mediate transruminal fluxes of short-chain fatty acids, ketone bodies, and lactate. Using an RT-PCR approach, we demonstrate expression of MCT1 (SLC16A1) and MCT2 (SLC16A7) mRNA in isolated bovine rumen epithelium. cDNA sequence from these PCR products combined with overlapping expressed sequence tag data allowed compilation of the complete open reading frames for MCT1 and MCT2. Immunohistochemical localization of MCT1 shows plasma membrane staining in cells of the stratum basale, with intense staining of the basal aspects of the cells. Immunostaining decreased in the cell layers toward the rumen lumen, with weak staining in the stratum spinsoum. Immunostaining in the stratum granulosum and stratum corneum was essentially negative. Since monocarboxylate transport will load the cytosol with acid, expression and location of Na+/H+ exchanger (NHE) family members within the rumen epithelium were determined. RT-PCR demonstrates expression of multiple NHE family members, including NHE1, NHE2, NHE3, and NHE8. In contrast to MCT1, immunostaining showed that NHE1 was predominantly localized to the stratum granulosum, with a progressive decrease toward the stratum basale. NHE2 immunostaining was observed mainly at an intracellular location in the stratum basale, stratum spinosum, and stratum granulosum. Given the anatomic localization of MCT1, NHE1, and NHE2, the mechanism of transruminal short-chain fatty acid, ketone body, and lactate transfer is discussed in relation to a functional model of the rumen epithelium comprising an apical permeability barrier at the stratum granulosum, with a cell syncitium linking the stratum granulosum to the blood-facing stratum basale.  相似文献   

2.
High levels of lactate and H+-ions play an important role in the invasive and metastatic cascade of some tumours. We develop a mathematical model of cellular pH regulation focusing on the activity of the Na+/H+ exchanger (NHE) and the lactate/H+ symporter (MCT) to investigate the spatial correlations of extracellular lactate and H+-ions. We highlight a crucial role for blood vessel perfusion rates in determining the spatial correlation between these two cations. We also predict critical roles for blood lactate, the activity of the MCTs and NHEs on the direction of the cellular pH gradient in the tumour. We also incorporate experimentally determined heterogeneous distributions of the NHE and MCT transporters. We show that this can give rise to a higher intracellular pH and a lower intracellular lactate but does not affect the direction of the reversed cellular pH gradient or redistribution of protons away from the glycolytic source. On the other hand, including intercellular gap junction communication in our model can give rise to a reversed cellular pH gradient and can influence the levels of pH.  相似文献   

3.
Whereas the tumor acidic extracellular pH plays a crucial role in the invasive process, the mechanism(s) behind this acidification, especially in low nutrient conditions, are unclear. The regulation of the Na(+)/H(+) exchanger (NHE) and invasion by serum deprivation were studied in a series of breast epithelial cell lines representing progression from non-tumor to highly metastatic cells. Whereas serum deprivation reduced lactate production in all three cells lines, it inhibited NHE activity in the non-tumor cells and stimulated it in the tumor cells with a larger stimulation in the metastatic cells. The stimulation of NHE in the tumor cell lines was the result of an increased affinity of the internal H(+) regulatory site of the NHE without changes in sodium kinetics or expression. Serum deprivation conferred increased cell motility and invasive ability that were abrogated by specific inhibition of the NHE. Inhibition of phosphoinositide 3-kinase by overexpression of a dominant-negative mutant or wortmannin incubation inhibited NHE activity and invasion in serum replete conditions while potentiating the serum deprivation-dependent activation of the NHE and invasion. These results indicate that the up-regulation of the NHE by a phosphoinositide 3-kinase-dependent mechanism plays an essential role in increased tumor cell invasion induced by serum deprivation.  相似文献   

4.
We examined the effect of intracellular acidification on the reverse mode of Na+/H+ exchange by measuring 22Na+ efflux from 22Na+-loaded PS120 cells expressing the Na+/H+ exchanger (NHE) isoforms NHE1, NHE2, and NHE3. The 5-(N-ethyl-N-isopropyl)amiloride (EIPA)- or amiloride-sensitive fraction of 22Na+ efflux was dramatically accelerated by cytosolic acidification as opposed to thermodynamic prediction, supporting the concept that these NHE isoforms are activated by protonation of an internal binding site(s) distinct from the H+ transport site. Intracellular pH (pHi) dependence of 22 Na+ efflux roughly exhibited a bell-shaped profile; mild acidification from pHi 7.5 to 7 dramatically accelerated 22Na+ efflux, whereas acidification from pHi 6.6 gradually decreased it. Alkalinization above pHi 7.5 completely suppressed EIPA-sensitive 22Na+ efflux. Cell ATP depletion and mutation of NHE1 at Arg440 (R440D) caused a large acidic shift of the pHi profile for 22Na+ efflux, whereas mutation at Gly455 (G455Q) caused a significant alkaline shift. Because these mutations and ATP depletion cause correspondingly similar effects on the forward mode of Na+/H+ exchange, it is most likely that they alter exchange activity by modulating affinity of the internal modifier site for protons. The data provide substantial evidence that a proton modifier site(s) distinct from the transport site controls activities of at least three NHE isoforms through cooperative interaction with multiple protons.  相似文献   

5.
Monocarboxylate transporter 4 (MCT4) is a pH-dependent bi-directional lactate transporter. Transport of lactate via MCT4 is increased by extracellular acidification. We investigated the critical histidine residue involved in pH regulation of MCT4 function. Transport of lactate via MCT4 was measured by using a Xenopus laevis oocyte expression system. MCT4-mediated lactate transport was inhibited by Zn2+ in a pH physiological condition but not in an acidic condition. The histidine modifier DEPC (diethyl pyrocarbonate) reduced MCT4 activity but did not completely inactivate MCT4. After treatment with DEPC, pH regulation of MCT4 function was completely knocked out. Inhibitory effects of DEPC were reversed by hydroxylamine and suppressed in the presence of excess lactate and Zn2+. Therefore, we performed an experiment in which the extracellular histidine residue was replaced with alanine. Consequently, the pH regulation of MCT4-H382A function was also knocked out. Our findings demonstrate that the histidine residue His382 in the extracellular loop of the transporter is essential for pH regulation of MCT4-mediated substrate transport activity.  相似文献   

6.
The goal of the present work was to evaluate the correlation of glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX) with the monocarboxylate transporters 1 (MCT1) and 4 (MCT4) and their chaperone, CD147, in breast cancer. The clinico-pathological value of GLUT1 and CAIX was also evaluated. For that, we analysed the immunohistochemical expression of GLUT1 and CAIX, in a large series of invasive breast carcinoma samples (n=124), previously characterized for MCT1, MCT4 and CD147 expression. GLUT1 expression was found in 46% of the cases (57/124), while CAIX was found in 18% of the cases (22/122). Importantly, both MCT1 and CD147, but not MCT4, were associated with GLUT1 and CAIX expression. Also, GLUT1 and CAIX correlated with each other. Concerning the clinico-pathological values, GLUT1 was associated with high grade tumours, basal-like subtype, absence of progesterone receptor, presence of vimentin and high proliferative index as measured by Ki-67. Additionally, CAIX was associated with large tumour size, high histological grade, basal-like subtype, absence of estrogen and progesterone receptors and presence of basal cytokeratins and vimentin expression. Finally, patients with CAIX positive tumours had a significantly shorter disease-free survival. The association between MCT1 and both GLUT1 and CAIX may result from hypoxia-mediated metabolic adaptations, which confer a glycolytic, acid-resistant and more aggressive phenotype to cancer cells.  相似文献   

7.
Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acid-resistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness.  相似文献   

8.
Acidic extracellular pH (pHe) is a common feature of the tumor microenvironment and has been implicated in tumor invasion through the induction of protease secretion. Since lysosomes constitute the major storehouse of cellular proteases, the trafficking of lysosomes to the cell periphery may be required in order to secrete proteases. We demonstrate that a pHe of 6.4-6.8 induced the trafficking of lysosomes to membrane protrusions in the cell periphery. This trafficking event depended upon the PI3K pathway, the GTPase RhoA and sodium-proton exchange activity, resulting in lysosomal exocytosis. Acidic pHe induced a cytoplasmic acidification (although cytoplasmic acidification was not sufficient for acidic pHe-induced lysosome trafficking and exocytosis) and inhibition of NHE activity with the amiloride derivative, EIPA or the anti-diabetic agent troglitazone prevented lysosome trafficking to the cell periphery. Interestingly, using the more specific NHE1 and NHE3 inhibitors, cariporide and s3226 respectively, we show that multiple NHE isoforms are involved in acidic pHe-induced lysosome trafficking and exocytosis. Moreover, in cells expressing NHE1 shRNA, although basal NHE activity was decreased, lysosomes still underwent acidic pHe-induced trafficking, suggesting compensation by other NHE family members. Together these data implicate proton exchangers, especially NHE1 and NHE3, in acidic pHe-induced lysosome trafficking and exocytosis.  相似文献   

9.
Extracellular zinc promotes cell proliferation and its deficiency leads to impairment of this process, which is particularly important in epithelial cells. We have recently characterized a zinc-sensing receptor (ZnR) linking extracellular zinc to intracellular release of calcium. In the present study, we addressed the role of extracellular zinc, acting via the ZnR, in regulating the MAP kinase pathway and Na+/H+ exchange in colonocytes. We demonstrate that Ca2+ release, mediated by the ZnR, induces phosphorylation of ERK1/2, which is highly metal-specific, mediated by physiological concentrations of extracellular Zn2+ but not by Cd2+, Fe2+, Ni2+, or Mn2+. Desensitization of the ZnR by Zn2+, is followed by approximately 90% inhibition of the Zn2+ -dependent ERK1/2 phosphorylation, indicating that the ZnR is a principal link between extracellular Zn2+ and ERK1/2 activation. Application of both the IP3 pathway and PI 3-kinase antagonists largely inhibited Zn2+ -dependent ERK1/2 phosphorylation. The physiological significance of the Zn2+ -dependent activation of ERK1/2 was addressed by monitoring Na+/H+ exchanger activity in HT29 cells and in native colon epithelium. Preincubation of the cells with zinc was followed by robust activation of Na+/H+ exchange, which was eliminated by cariporide (0.5 microm); indicating that zinc enhances the activity of NHE1. Activation of NHE1 by zinc was totally blocked by the ERK1/2 inhibitor, U0126. Prolonged acidification, in contrast, stimulates NHE1 by a distinct pathway that is not affected by extracellular Zn2+ or inhibitors of the MAP kinase pathway. Desensitization of ZnR activity eliminates the Zn2+ -dependent, but not the prolonged acidification-dependent activation of NHE1, indicating that Zn2+ -dependent activation of H+ extrusion is specifically mediated by the ZnR. Our results support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways that affect pH homeostasis in colonocytes. Furthermore activation of both, ERK and NHE1, by extracellular zinc may provide the mechanism linking zinc to enhanced cell proliferation.  相似文献   

10.
The Na(+)/H(+) exchanger 1 (NHE1) exists as a homo-dimer in the plasma membranes. In the present study, we have investigated the functional significance of the dimerization, using two nonfunctional NHE1 mutants, surface-expression-deficient G309V and transport-deficient E262I. Biochemical and immunocytochemical experiments revealed that these NHE1 mutants are capable of interacting with the wild-type NHE1 and, thus, forming a heterodimer. Expression of G309V retained the wild-type NHE1 to the ER membranes, suggesting that NHE1 would first form a dimer in the ER. On the other hand, expression of E262I markedly reduced the exchange activity of the wild-type NHE1 through an acidic shift in the intracellular pH (pH(i)) dependence, suggesting that dimerization is required for exchange activity in the physiological pH(i) range. However, a dominant-negative effect of E262I was not detected when exchange activity was measured at acidic pH(i), implying that one active subunit is sufficient to catalyze ion transport when the intracellular H(+) concentration is sufficiently high. Furthermore, intermolecular cysteine cross-linking at extracellular position Ser(375) with a bifunctional sulfhydryl reagent dramatically inhibited exchange activity mainly by inducing the acidic shift of pH(i) dependence and abolished extracellular stimuli-induced activation of NHE1 without causing a large change in the affinities for extracellular Na(+) or an inhibitor EIPA. Because monofunctional sulfhydryl regents had no effect, it is likely that cross-linking inhibited the activity of NHE1 by restricting a coupled motion between the two subunits during transport. Taken together, these data support the view that dimerization of two active subunits are required for NHE1 to possess the exchange activity in the neutral pH(i) range, although each subunit is capable of catalyzing transport in the acidic pH(i) range.  相似文献   

11.
We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1−/− skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K1/2) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K1/2 for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K1/2 for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K1/2 for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in “parallel” at alkaline pH. In the second “serial” model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.  相似文献   

12.
Sodium proton exchangers (NHEs) constitute a large family of polytopic membrane protein transporters found in organisms across all domains of life. They are responsible for the exchange of protons for sodium ions. In archaea, bacteria, yeast and plants they provide increased salt tolerance by removing sodium in exchanger for extracellular protons. In humans they have a host of physiological functions, the most prominent of which is removal of intracellular protons in exchange for extracellular sodium. Human NHE is also involved in heart disease, cell growth and in cell differentiation. NHE’s physiological roles and the intriguing pathological consequences of their actions, make them a very important target of structural and functional studies. There are nine isoforms identified to date in humans. This review provides a brief overview of the human NHE’s physiological and pathological roles and cellular/tissue distribution, with special attention to the exemplar member NHE1. A summary of our knowledge to date of the structure and function of NHE1 is included focusing on a discussion of the recent discrepancies reported on the topology of NHE1. Finally we discuss a newly discovered relative of the NHE1 isoform, the Na+/Li+ exchanger, focusing on its predicted topology and its potential roles in disease.  相似文献   

13.
pH nanoenvironment at the surface of single melanoma cells.   总被引:5,自引:0,他引:5  
Extracellular pH and the Na(+)/H(+) exchanger (NHE1) modulate tumor cell migration. Yet, the pH nanoenvironment at the outer surface of the cell membrane (pH(em)) where cell/matrix interaction occurs and matrix metalloproteinases work was never measured. We present a method to measure this pH nanoenvironment using proton-sensitive dyes to label the outer leaflet of the plasma membrane or the glycocalyx of human melanoma cells. Polarized cells generate an extracellular proton gradient at their surface that increases from the rear end to the leading edge of the lamellipodium along the direction of movement. This gradient collapses upon NHE1 inhibition by HOE642. NHE1 stimulation by intracellular acidification increases the difference in pH(em) between the tips of lamellipodia and the cell body in a Na(+) dependent way. Thus, cells create a pH nanoenvironment that promotes cell migration by facilitating cell adhesion at their front and the release of cell/matrix contacts at their rear part.  相似文献   

14.
Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer. The majority of patients present advanced stage disease and has poor survival. Therefore, it is imperative to search for new biomarkers and new alternative and effective treatment options. Most cancer cells rely on aerobic glycolysis to generate energy and metabolic intermediates. This phenotype is a hallmark of cancer, characterized by an increase in glucose consumption and production of high amounts of lactate. Consequently, cancer cells need to up-regulate many proteins and enzymes related with the glycolytic metabolism. Thus, the aim of this study was to characterize metabolic phenotype of oral cavity cancers (OCC) by assessing the expression pattern of monocarboxylate transporters (MCTs) 1, 2 and 4 and other proteins related with the glycolytic phenotype. Material and Methods: We evaluated the immunohistochemical expression of MCT1, MCT4, CD147, GLUT1 and CAIX in 135 human samples of OCC and investigated the correlation with clinicopathological parameters and the possible association with prognosis. Results: We observed that all proteins analyzed presented significantly higher plasma membrane expression in neoplastic compared to non-neoplastic samples. MCT4 was significantly associated with T-stage and advanced tumoral stage, while CD147 was significantly correlated with histologic differentiation. Interestingly, tumors expressing both MCT1 and MCT4 but negative for MCT2 were associated with shorter overall survival. Conclusion: Overexpression of MCT1/4, CD147, GLUT1 and CAIX, supports previous findings of metabolic reprograming in OCC, warranting future studies to explore the hyper-glycolytic phenotype of these tumors. Importantly, MCT expression revealed to have a prognostic value in OCC survival.  相似文献   

15.
We have explored CD44 (a hyaluronan (HA) receptor) interaction with a Na(+)-H(+) exchanger (NHE1) and hyaluronidase-2 (Hyal-2) during HA-induced cellular signaling in human breast tumor cells (MDA-MB-231 cell line). Immunological analyses demonstrate that CD44s (standard form) and two signaling molecules (NHE1 and Hyal-2) are closely associated in a complex in MDA-MB-231 cells. These three proteins are also significantly enriched in cholesterol and ganglioside-containing lipid rafts, characterized as caveolin and flotillin-rich plasma membrane microdomains. The binding of HA to CD44 activates Na(+)-H(+) exchange activity which, in turn, promotes intracellular acidification and creates an acidic extracellular matrix environment. This leads to Hyal-2-mediated HA catabolism, HA modification, and cysteine proteinase (cathepsin B) activation resulting in breast tumor cell invasion. In addition, we have observed the following: (i) HA/CD44-activated Rho kinase (ROK) mediates NHE1 phosphorylation and activity, and (ii) inhibition of ROK or NHE1 activity (by treating cells with a ROK inhibitor, Y27632, or NHE1 blocker, S-(N-ethyl-N-isopropyl) amiloride, respectively) blocks NHE1 phosphorylation/Na(+)-H(+) exchange activity, reduces intracellular acidification, eliminates the acidic environment in the extracellular matrix, and suppresses breast tumor-specific behaviors (e.g. Hyal-2-mediated HA modification, cathepsin B activation, and tumor cell invasion). Finally, down-regulation of CD44 or Hyal-2 expression (by treating cells with CD44 or Hyal-2-specific small interfering RNAs) not only inhibits HA-mediated CD44 signaling (e.g. ROK-mediated Na(+)-H(+) exchanger reaction and cellular pH changes) but also impairs oncogenic events (e.g. Hyal-2 activity, hyaluronan modification, cathepsin B activation, and tumor cell invasion). Taken together, our results suggest that CD44 interaction with a ROK-activated NHE1 (a Na(+)-H(+) exchanger) in cholesterol/ganglioside-containing lipid rafts plays a pivotal role in promoting intracellular/extracellular acidification required for Hyal-2 and cysteine proteinase-mediated matrix degradation and breast cancer progression.  相似文献   

16.
Na+/H+ exchanger (NHE) activity is exquisitely dependent on the intra- and extracellular concentrations of Na+ and H+. In addition, Cl- ions have been suggested to modulate NHE activity, but little is known about the underlying mechanism, and the Cl- sensitivity of the individual isoforms has not been established. To explore their Cl- sensitivity, types 1, 2, and 3 Na+/H+ exchangers (NHE1, NHE2, and NHE3) were heterologously expressed in antiport-deficient cells. Bilateral replacement of Cl- with nitrate or thiocyanate inhibited the activity of all isoforms. Cl- depletion did not affect cell volume or the cellular ATP content, which could have indirectly altered NHE activity. The number of plasmalemmal exchangers was unaffected by Cl- removal, implying that inhibition was due to a decrease in the intrinsic activity of individual exchangers. Analysis of truncated mutants of NHE1 revealed that the anion sensitivity resides, at least in part, in the COOH-terminal domain of the exchanger. Moreover, readdition of Cl- into the extracellular medium failed to restore normal transport, suggesting that intracellular Cl- is critical for activity. Thus interaction of intracellular Cl- with the COOH terminus of NHE1 or with an associated protein is essential for optimal activity.  相似文献   

17.
Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the equilibration of carbon dioxide, protons, and bicarbonate. For several acid/base-coupled membrane carriers it has been shown that the catalytic activity of CA supports transport activity, an interaction coined "transport metabolon." We have reported that CA isoform II (CAII) enhances lactate transport activity of the monocarboxylate transporter isoform I (MCT1) expressed in Xenopus oocytes, which does not require CAII catalytic activity (Becker, H. M., Fecher-Trost, C., Hirnet, D., Sültemeyer, D., and Deitmer, J. W. (2005) J. Biol. Chem. 280, 39882-39889 ). Coexpression of MCT1 with either wild type CAII or the catalytically inactive mutant CAII-V143Y similarly enhanced MCT1 activity, although injection of CAI or coexpression of an N-terminal mutant of CAII had no effect on MCT1 transport activity, demonstrating a specific, nonenzymatic action of CAII on lactate transport via MCT1. If the H(+) gradient was set to dominate the rate of lactate transport by applying low concentrations of lactate at a high H(+) concentration, the effect of CAII was largest. We tested the hypothesis of whether CAII helps to shuttle H(+) along the inner face of the cell membrane by measuring the pH change with fluorescent dye in different areas of interest during focal lactate application. Intracellular pH shifts decayed from the focus of lactate application to more distant sites much less when CAII had been injected. We present a hypothetical model in which the effective movement of H(+) into the bulk cytosol is increased by CAII, thus slowing the dissipation of the H(+) gradient across the cell membrane, which drives MCT1 activity.  相似文献   

18.
We have previously shown in renal cells that expression of the water channel Aquaporin-2 increases cell proliferation by a regulatory volume mechanism involving Na+/H+ exchanger isoform 2. Here, we investigated if Aquaporin-2 (AQP2) also modulates Na+/H+ exchanger isoform 1-dependent cell proliferation. We use two AQP2-expressing cortical collecting duct models: one constitutive (WT or AQP2-transfected RCCD1 cell line) and one inducible (control or vasopressin-induced mpkCCDc14 cell line). We found that Aquaporin-2 modifies Na+/H+ exchanger isoform 1 (NHE1) contribution to cell proliferation. In Aquaporin-2-expressing cells, Na+/H+ exchanger isoform 1 is anti-proliferative at physiological pH. In acid media, Na+/H+ exchanger isoform 1 contribution turned from anti-proliferative to proliferative only in AQP2-expressing cells. We also found that, in AQP2-expressing cells, NHE1-dependent proliferation changes parallel changes in stress fiber levels: at pH 7.4, Na+/H+ exchanger isoform 1 would favor stress fiber disassembly and, under acidosis, NHE1 would favor stress fiber assembly. Moreover, we found that Na+/H+ exchanger-dependent effects on proliferation linked to Aquaporin-2 relied on Transient Receptor Potential Subfamily V calcium channel activity. In conclusion, our data show that, in collecting duct cells, the water channel Aquaporin-2 modulates NHE1-dependent cell proliferation. In AQP2-expressing cells, at physiological pH, the Na+/H+ exchanger isoform 1 function is anti-proliferative and, at acidic pH, Na+/H+ exchanger isoform 1 function is proliferative. We propose that Na+/H+ exchanger isoform 1 modulates proliferation through an interplay with stress fiber formation.  相似文献   

19.
Apelin is the endogenous ligand for the G protein-coupled receptor APJ. Both apelin and APJ receptor are distributed in vascular smooth muscle cells (VSMCs) and play important roles in the cardiovascular system. Our previous reports have indicated that apelin-13 promoted the proliferation of VSMCs, but its exact mechanism remains to be further explored. The results of the present study demonstrated that the Warburg effect plays a pivotal role in apelin-13-induced human aortic vascular smooth muscle cells (HA-VSMCs) proliferation. Apelin-13 promoted the expression of glucose transporter type 1 (GLUT1), pyruvate kinase 2 (PKM2), lactate dehydrogenase A (LDHA), monocarboxylate transporter 1 (MCT1), and monocarboxylate transporter 4 (MCT4) in a dose- and time-dependent manner. Moreover, apelin-13 increased the extracellular, intracellular lactate level, and decreased adenosine triphosphate level in HA-VSMCs. Furthermore, siRNA-PKM2 reversed extracellular and intracellular lactate generation and inhibited the proliferation of HA-VSMCs induced by apelin-13. Downregulation of LDHA also significantly prevented extracellular and intracellular lactate generation and inhibited the proliferation of HA-VSMCs induced by apelin-13. Taken together, our results demonstrated a novel mechanism for HA-VSMCs proliferation induced by apelin-13 via Warburg effect.  相似文献   

20.
We examine the influence of the cytosolic and membrane-bound contents of carbonic anhydrase (CA; CAII, CAIII, CAIV, and CAXIV) and the muscle content of proteins involved in lactate and proton transport [monocarboxylate transporter (MCT) 1, MCT4, and Na(+)/H(+) exchanger 1 (NHE1)] on work capacity during supramaximal exercise. Eight healthy, sedentary subjects performed exercises at 120% of the work rate corresponding to maximal oxygen uptake (W(max)) until exhaustion in placebo (Con) and metabolic alkalosis (Alk) conditions. The total (W(tot)) and supramaximal work performed (W(sup)) was measured. Muscle biopsies were obtained before and immediately after standardized exercises (se) at 120% W(max) in both conditions to determine the content of the targeted proteins, the decrease in muscle pH (DeltapH(m)), and the muscle lactate accumulation ([Lac](m)) per joule of W(sup) (DeltapH(m)/W(sup-se) and Delta[Lac](m)/W(sup-se), respectively) and the dynamic buffer capacity. In Con, W(sup) was positively [corrected] correlated with [corrected] MCT1, and tended to be positively correlated with MCT4 and NHE1. CAII + CAIII were correlated positively with DeltapH(m)/W(sup-se) and negatively with Delta[Lac](m)/W(sup-se), while CAIV was positively related to W(tot). The changes in W(sup) with Alk were correlated positively with those in dynamic buffer capacity and negatively with W(sup) in Con. Performance improvement with Alk was greater in subjects having a low content of proteins involved in pH regulation and lactate/proton transport. These results show the importance of pH regulating mechanisms and lactate/proton transport on work capacity and the role of the CA to delay decrease in pH(m) and accumulation in [Lac](m) during supramaximal exercise in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号