首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
遗传学和分子生物等技术的快速发展,直接影响到了基因水平对构成学习记忆分子机制。目前,有关学习记忆的分子生物学研究仍是一个热点话题,从学习记忆的分子生物学分析,长时记忆中突触传递的长时程增强(LTP)和长时抑制(LTD)在学习记忆中个扮演着重要的角色,本文就对这一重要角色在学习记忆分子生物学中的作用进行详细解析。  相似文献   

2.
Chen XH  Shu SY 《生理科学进展》2004,35(2):173-176
钙神经素 (calcineurin ,CN)是一种钙依赖的蛋白磷酸酶 ,其催化亚基的基因编码具严格保守性。近年来研究证明其在学习和记忆中有重要作用 ,参与了大脑神经元突触效应的去增强、多种不同机制的长时程抑制 (LTD)、长时程增强 (LTP)、认知记忆、短期记忆向长期记忆的转换、脑老化等过程。深入研究CN参与学习和记忆的机制及其与记忆减退性疾病的关系 ,具有重要理论与实践意义  相似文献   

3.
吴坤  徐林  黄京飞 《动物学研究》2009,30(4):389-395
在作为成瘾检测手段的条件化位置偏爱模型中,环境背景和成瘾药物间的关联性学习起着关键的作用。突触可塑性作为学习记忆可能的物质基础,在药物成瘾方面的研究也越来越多,但其表现形式,长时程增强(LTP)或者长时程抑制(LTD)在成瘾过程中所发挥的具体作用尚不得而知。因此,本文利用生物信息学手段,设计并合成了旨在分别阻断LTP和LTD的干扰肽,研究其对小鼠吗啡条件化位置偏爱的影响。结果发现,干扰肽Pep-A2和Pep-A3能够分别特异地阻断海马CA1区的LTP和LTD,在测试前尾静脉注射具有穿膜特性的LTP/LTD特异性干扰肽(Tat-A2/Tat-A3),均能阻断或损伤吗啡诱导的条件化位置偏爱的表达。此发现提示我们,LTP和LTD在成瘾性异常记忆的过程中均发挥着重要的作用。  相似文献   

4.
基因敲除与学习、记忆:现状、问题和展望   总被引:1,自引:0,他引:1  
基因敲除技术的应用使学习、记忆分子机制的研究出现了新的突破.目前已报道了多种学习、记忆以及LTP、LTD有缺陷的基因敲除动物,发现多种基因在学习、记忆的形成过程中必不可少.然而,现有研究的一个较大问题是忽视了遗传背景基因在表型改变中的作用,被认为由突变靶基因造成的表型缺陷实际上可能是由背景基因而不是由突变基因造成的.要排除背景基因的作用,必须建立新的ES细胞,选择纯遗传背景的小鼠品系,并且在时间、范围和程度上对基因敲除进行精细的控制.  相似文献   

5.
水通道蛋白-4(aquaporin-4,AQP-4)作为水通道蛋白家族之一,在中枢神经系统具有广泛的分布,且在星形胶质细胞终足上高表达。研究表明,AQP-4可通过调节星形胶质细胞的功能在维持脑内水稳态、脑体积和神经元兴奋性等方面发挥重要的作用。但是AQP-4在突触可塑性、学习记忆及认知等方面所发挥的作用还不明了。突触功能可塑性的变化按其性质的不同可分为长时程增强(long term potentiation,LTP)和长时程抑制(long term depression,LTD),两者被公认为是学习记忆的神经生物学基础。海马区是调节学习记忆过程的核心脑区,其突触可塑性与学习记忆有密切的关系。本文旨在综述AQP-4与海马区突触可塑性及相关学习记忆的关系研究进展,并展望AQP-4作为新的靶点在认知功能障碍中的可能作用,为临床治疗相关神经系统疾病提供新的思路与方向。  相似文献   

6.
若干有关学习和记忆神经机制问题的讨论   总被引:12,自引:1,他引:11  
若干有关学习和记忆神经机制问题的讨论梅镇彤(中国科学院上海生理研究所,上海200031)目录一、学习和记忆的分类问题二、突触可塑性与学习记忆三、运动学习记忆的神经基础四、长时记忆分子生物学研究的新进展五、结束语学习和记忆是脑的重要功能,关于学习和记忆...  相似文献   

7.
Tan T  Zhang BL  Tian X 《生理学报》2011,63(3):225-232
突触传递的长时程抑制(long-term depression,LTD)和长时程增强(longterm-potentiation,LTP)是突触可塑性的两种重要形式,并且与学习记忆密切相关.本文探讨Sprague-Dawley(SD)大鼠在海马齿状回区(dentate gyrus,DG)注射36 h孵育形成的寡聚体Aβ...  相似文献   

8.
抑郁症模型大鼠学习记忆能力变化研究   总被引:3,自引:0,他引:3  
为探讨抑郁症发生发展过程中学习记忆能力的变化模式及其可能机制.分别采用21天慢性非预见性刺激法和嗅球切除法建立的抑郁症模型大鼠.运用旷场行为实验(open—field behavior)检测大鼠主动性活动能力,用Morris水迷宫法检测大鼠空间学习记忆能力,HPLC—UV法测定大鼠血清皮质醇含量。电生理法记录海马CA1区LTP与LTD,观察海马神经元的突触可塑性。结果显示:与对照组相比,两种模型的自主活动性、空间探索兴趣和学习能力都明显降低,而记忆的反馈功能没有明显的变化。同时.两种模型大鼠海马神经细胞的突触可塑性显著下降,血清皮质醇的含量则明显上升。提示两种建模方法均导致大鼠产生抑郁症状和学习能力障碍.但对记忆反馈功能无明显影响。  相似文献   

9.
为了探讨LTD4、IL-6以及TNF-α在成人分泌性中耳炎(SOM)的中耳积液(MEEs)中的表达及在SOM发病中可能的作用机制,本研究采用酶联免疫吸附试验法测定32例(40只单耳)成人SOM患者中耳积液,从中取28例患者(4名拒测)的外周血浆及20例健康人外周血浆中LTD4、IL-6以及TNF-α的浓度并进行分析。研究结果表明,LTD4、IL-6以及TNF-α在所有标本中的检出率均为100%;LTD4以及IL-6在实验组中的浓度明显高于两对照组且有统计学意义,TNF-α的浓度表达与两对照组比较分析后无统计学意义,而LTD4以及IL-6在黏液性中耳积液中的表达明显高于在浆液性中耳积液中的表达,且数据分析后具有统计学意义。显然,LTD4及IL-6参与了SOM发病的免疫机制,与鼓室内炎症反应的迁延及中耳积液的清除有关。  相似文献   

10.
点燃效应与海马即早基因的表达   总被引:4,自引:0,他引:4  
海马是一个与学习记忆有关的结构。海马的神经分子生物学研究集中于探讨学习记忆的基础—神经系统长时程改变的引出与维持的机制。关于海马的多项研究表明,当点燃效应的后放电后,海马的某些即早基因的表达暂时、大量地增加,其蛋白产物改变了编码一些细胞内蛋白的“晚效应基因”从而导致了一种长期改变,这可以能是与学习记忆有关的神经系统长时程改变的分子基础。  相似文献   

11.
日龄雏鸡的学习记忆模型及其分子机制和药理学研究进展   总被引:1,自引:0,他引:1  
日龄雏鸡一次性被动回避学习和厌恶性条件化学习模型被广泛用于学习记忆机制的研究,并取得了很大的进展. 上纹体和旁嗅核是参与雏鸡学习记忆的主要脑区. 结合相关的分子机制研究,药理学实验发现了多种能影响不同记忆阶段的药物,如去甲肾上腺素对长时记忆有增强和调控作用. 由于鸟类和哺乳动物与记忆相关的脑结构和功能具有一定可比性,上述工作可为了解大脑的学习记忆功能提供重要参考.  相似文献   

12.
The nitric oxide (NO)-cyclic GMP (cGMP) signaling pathway is assumed to play an important role in processes underlying learning and memory. We used phosphodiesterase type 5 (PDE5) inhibitors to study the role of cGMP in object- and spatial memory. Our results and those reported in other studies indicate that elevated hippocampal cGMP levels are required to improve the memory performance of rodents in object recognition and passive avoidance learning, but not in spatial learning. The timing of treatment modulates the effects on memory and strongly supports a role for cGMP in early stages of memory formation. Alternative explanations for the improved memory performance of PDE5 inhibitors are also discussed. Immunocytochemical studies showed that in vitro slice incubations with PDE5 inhibitors increase NO-stimulated cGMP levels mainly in hippocampal varicose fibers. Reviewing the available data on the localization of the different components of the NO-cGMP signaling pathway, indicates a complex interaction between NO and cGMP, which may be independent of each other. It is discussed that further studies are needed, immunocytochemical and behavioral, to better understand the cGMP-mediated molecular mechanisms underlying memory formation.  相似文献   

13.
神经元的突触可塑性与学习和记忆   总被引:7,自引:0,他引:7  
大量研究表明,神经元的突触可塑性包括功能可塑性和结构可塑性,与学习和记忆密切相关.最近,在经过训练的动物海马区,记录到了学习诱导的长时程增强(long term potentiation,LTP),如果用激酶抑制剂阻断晚期LTP,就会使大鼠丧失训练形成的记忆.这些结果指出,LTP可能是形成记忆的分子基础.因此,进一步研究哺乳动物脑内突触可塑性的分子机制,对揭示学习和记忆的神经基础有重要意义.此外,在精神迟滞性疾病和神经退行性疾病患者脑内记录到异常的LTP,并发现神经元的树突棘数量减少,形态上产生畸变或萎缩,同时发现,产生突变的基因大多编码调节突触可塑性的信号通路蛋白,故突触可塑性研究也将促进精神和神经疾病的预防和治疗.综述了突触可塑性研究的最新进展,并展望了其发展前景.  相似文献   

14.
The hypernetwork architecture is a biologically inspired learning model based on abstract molecules and molecular interactions that exhibits functional and organizational correlation with biological systems. Hypernetwork organisms were trained, by molecular evolution, to solve N-input parity tasks. We found that learning improves when molecules exhibit inhibitory sites, allowing molecular inhibition and opening the possibility of forming negative feedback regulatory pathways. Optimal learning is achieved when at least 20% of the molecules in each cell have inhibitory sites. Intra-cellular as well as inter-cellular molecular inhibitions play an important role in the information processing of hypernetwork organisms, by maintaining a balance of the molecular cascade reactions. Similar mechanisms inside neurons are considered important for memory.  相似文献   

15.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

16.
Synaptic plasticity has a central role in nearly all models of learning and memory. Besides experiments documenting changes in synaptic function during learning, most of the evidence supporting a role for synaptic plasticity in memory comes from manipulations that either enhance or lesion synaptic processes. In the last decade, mouse transgenetics (knock outs and transgenics) have provided compelling evidence that the molecular mechanisms responsible for the induction and stability of synaptic changes have a critical role in the acquisition and storage of information. Here, I will review this literature, with a special focus on studies of hippocampal-dependent learning and memory.  相似文献   

17.
The amygdala modulates memory consolidation and the storage of emotionally relevant information in other brain areas, and itself comprises a site of neural plasticity during aversive learning. These processes have been intensively studied in Pavlovian fear conditioning, a leading aversive learning paradigm that is dependent on the structural and functional integrity of the amygdala. The rapidness and persistence, and the relative ease, with which this conditioning paradigm can be applied to a great variety of species have made it an attractive model for neurochemical and electrophysiological investigations on memory formation. In this review we summarise recent studies which have begun to unravel cellular processes in the amygdala that are critical for the formation of long-term fear memory and have identified molecular factors and mechanisms of neural plasticity in this brain area.  相似文献   

18.
中央复合体是昆虫脑内具有显著特征的一个重要结构,它位于昆虫脑的中央,主要包括四个亚结构,相互间形成高度组织化的网络连接。中央复合体通过大范围神经元与多种感觉神经元和运动神经元相连,是一个控制脑的高级功能的中心。近年来的研究表明中央复合体参与了记忆的形成、运动的协调与控制以及处理偏振光进行导航等多种功能。揭示中央复合体参与以及调控这些复杂功能的神经机制,必将会极大地促进我们在神经回路层次上理解脑的高级复杂功能。  相似文献   

19.
20.
Wiltgen BJ  Brown RA  Talton LE  Silva AJ 《Neuron》2004,44(1):101-108
Studies of learning and memory have provided a great deal of evidence implicating hippocampal mechanisms in the initial storage of facts and events. However, until recently, there were few hints as to how and where this information was permanently stored. A recent series of rodent molecular and cellular cognition studies provide compelling evidence for the involvement of specific neocortical regions in the storage of information initially processed in the hippocampus. Areas of the prefrontal cortex, including the anterior cingulate and prelimbic cortices, and the temporal cortex show robust increases in activity specifically following remote memory retrieval. Importantly, damage to or inactivation of these areas produces selective remote memory deficits. Additionally, transgenic studies provide glimpses into the molecular and cellular mechanisms underlying cortical memory consolidation. The studies reviewed here represent the first exciting steps toward the understanding of the molecular, cellular, and systems mechanisms of how the brain stores our oldest and perhaps most defining memories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号