首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
长时程增强的形成机制及其与学习记忆的相关性   总被引:8,自引:0,他引:8  
  相似文献   

2.
长时程抑制(LTD)是突触可塑性的重要形式之一。根据诱导条件及部件的不同,LTD至少可分为四种类型本文不LTD的诱导和调制机理及其与学习、记忆的关系作一介绍。  相似文献   

3.
遗传学和分子生物等技术的快速发展,直接影响到了基因水平对构成学习记忆分子机制。目前,有关学习记忆的分子生物学研究仍是一个热点话题,从学习记忆的分子生物学分析,长时记忆中突触传递的长时程增强(LTP)和长时抑制(LTD)在学习记忆中个扮演着重要的角色,本文就对这一重要角色在学习记忆分子生物学中的作用进行详细解析。  相似文献   

4.
突触长时程增强形成与学习记忆的相关研究   总被引:4,自引:0,他引:4  
突触长时程增强(LTP)的形成与学习记忆有相似特征,将其作为记忆的一种模式加以研究,并深入探索LTP机制产生与静止突触的关系,长时程突触修饰与突触后神经细胞内Ca^2 的作用机制,学习行为后海马内出现的突触效能变化与行为学习之间的关系,以及BDNF对海马突触的LTP调节与长时记忆所涉及关于LTP的相关基因表达。  相似文献   

5.
长时程记忆作为依赖蛋白合成的记忆组分,对于了解高等认知活动的分子机制有着重要意义.与此同时,细胞粘连分子作为影响突触可塑性的重要因子在学习与记忆研究领域也日益得到重视.为探索作用于长时程记忆的细胞粘连分子,利用P因子在果蝇基因组随机插入制造突变体,并通过大规模行为筛选得到了一个可能的长时程记忆突变体RUO. 测序结果表明,突变体RUO的P因子位于果蝇中selectin超家族对应的furrowed同源基因功能片段和未知功能的CG1806基因编码片段之间,且更靠近furrowed片段.RT-PCR结果和互补遗传学实验均表明,突变体RUO主要影响furrowed基因的表达.为了进一步确认furrowed基因与长时程记忆的相关性,引入已知的furrowed基因突变体fw1.结果表明,fw1同样具有长时程记忆缺陷,同时具备正常的学习能力.荧光共聚焦扫描成像显示,该基因特异性的表达在果蝇大脑两个对称的未知神经元中.此项工作不仅证明了furrowed基因在果蝇长时程记忆中的重要作用,而且在解剖学上揭示了果蝇神经系统中可能参与长时程记忆形成的新的神经元.  相似文献   

6.
学习和记忆是脑的高级功能。学习指人和动物获得外界知识的神经过程;记忆指将获得的知识储存和读出的神经过程。突触蛋白(synapsin)是一种与突触结构和功能密切相关的膜蛋白,在突触的可塑性以及长时程增强(long-timepotentiation,LTP)中起着重要作用。而突触可塑性是突触对内外环境变化作出反应的能力,是学习记忆的神经生物学基础。LTP一直被认为是学习记忆的神经基础之一,是突触可塑性的功能指标,也是研究学习记忆的理想模型。该文介绍突触蛋白在学习记忆过程中的作用及机制、突触蛋白在学习记忆研究中的应用。  相似文献   

7.
海马神经元参与空间定位的长时程记忆   总被引:1,自引:0,他引:1  
众所周知 ,海马参与长时记忆的贮存和巩固。有报道表明 ,在研究记忆和神经可塑性的实验中 ,海马神经元放电发生短期的改变 ,但一直没有实验证据表明有持久性的神经元活动的变化。最近 ,Lever等人的研究表明 ,将大鼠置于两种不同几何形状的封闭环境中 ,海马的空间定位神经元对同一位置的反应会逐渐发生偏差 ,这种偏差对环境形状是特异的 ,不依赖于任何确定的奖赏 ,能够持续存在达一个月以上 ,并且当动物转移至同样形状的新环境中时保持不变。作者在大鼠脑内植入微电极以进行细胞外记录。将动物置于相同材料制成的圆形或正方形盒子中 ,监…  相似文献   

8.
CaMKⅡ在学习和记忆中的作用   总被引:1,自引:0,他引:1  
CaMKⅡ是突触后致密物(PSD)的主要成分,在Ca++CaM作用下自身磷酸化激活后能较长时间保持不依赖Ca++的激酶活性。CaMKⅡ突变小鼠学习记忆能力严重受损并且不能诱导长时程增加(LTP);小鼠学习训练后或者诱导LTP后,CaMKⅡ活性增加,因此,CaMKⅡ可能是学习和记忆的分子基础。  相似文献   

9.
CaMⅡ在学习和记忆中的作用   总被引:2,自引:0,他引:2  
CaMKⅡ是突触后致密物(PSD)的主要成分,在Ca^ /CaM作用下自身磷酸化激活后能较长时间保持不依赖Ca^ 的激酶活性。CaMKⅡ突变小鼠学习记忆能力严重受损并且不有诱导长时程增加(LTP);小鼠学习训练后或者诱导LTP后,CaMKⅡ活性增加,因此,CaMKⅡ可能是学习和记忆的分子基础。  相似文献   

10.
日龄雏鸡一次性被动回避学习和厌恶性条件化学习模型被广泛用于学习记忆机制的研究,并取得了很大的进展. 上纹体和旁嗅核是参与雏鸡学习记忆的主要脑区. 结合相关的分子机制研究,药理学实验发现了多种能影响不同记忆阶段的药物,如去甲肾上腺素对长时记忆有增强和调控作用. 由于鸟类和哺乳动物与记忆相关的脑结构和功能具有一定可比性,上述工作可为了解大脑的学习记忆功能提供重要参考.  相似文献   

11.
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.  相似文献   

12.
本工作观察到高频刺激自由活动的大鼠内侧隔核,对海马齿状回的群体蜂电位有一时性(1-2h)的抑制作用。在明暗辨别学习中每次训练作业后立即给予MS HFS,导致DG习得性长时程增强,(Long-term potentiation,LTP)的形成显著延缓,并且PS峰值增强的最高水平显著降低(P<0.001),辨别反应的习得相应延迟,但对DG习得性LTP的保持无影响。表明MS对DG习得性LTP的形成有抑制  相似文献   

13.
研究发现幼年和老年大鼠在条件性饮水反应的建立、消退和再建立过程中,海马CA_3区有习得性长时程突触增强(LTP)的形成、消退和再形成现象。在它的形成和再形成以及每实验日训练作业后习得性LTP的发展上,幼年鼠明显快于老年鼠,而习得性LTP的消退,在两组间无明显差异。这既表明海马CA_3区的习得性LTP具年龄特征,也为论证习得性LTP可能是学习和记忆的神经基础之一提供了新的证据。  相似文献   

14.
中医理论认为,脑功能的正常发挥与五脏有着极其密切的关系。因此学习记忆力下降的病因病机可以概括为五脏失调,五志失和,神机失用。五脏中一个或多个发生病理改变,都可能影响到脑的生理功能从而引起记忆力下降。因此中医可从通过调节五脏,使五脏调和,即可达到提高记忆力的目的。  相似文献   

15.
The effects of intranasal treatment with DDAVP on healthy, male volunteers was assessed. Subjects were asked to learn prose passages and then were given either 60 μg of DDAVP or saline in a double-blind procedure. Subjects were then asked to recall the passages after a 24-h delay. Treatment had no effect on recall of passages. This suggests that treatment with vasopressin affects acquisition rather than consolidation of newly learned information.  相似文献   

16.
作为一种临床上常用的静脉麻醉药,丙泊酚主要用于诱导或维持全身麻醉,近年来随着临床实践及实验室研究发现,除了麻醉作用外,丙泊酚还有许多其他非麻醉效应。如在给药期间可导致认知功能的损伤,其机制可能涉及增强抑制性神经元的活性、抑制兴奋性神经元的活性、抑制某些神经递质如一氧化氮的产生等影响记忆的形成;同时该药一经临床使用,就有报道指出其可能存在潜在的成瘾性,而后续多数研究均提示其能够诱导奖赏效应的产生从而导致其成瘾及滥用。为更好的推动对丙泊酚认知功能损伤的机制及保护措施的研究、以及其成瘾机制及戒断方法的研究,本文就近年丙泊酚对认知功能损伤作用及潜在成瘾性的研究进展作一综述。  相似文献   

17.
    
Dendritic spines form the postsynaptic compartment of most excitatory synapses in the vertebrate brain. Morphological changes of dendritic spines contribute to major forms of synaptic plasticity such as long-term potentiation (LTP) or depression (LTD). Synaptic plasticity underlies learning and memory, and defects in synaptic plasticity contribute to the pathogeneses of human brain disorders. Hence, deciphering the molecules that drive spine remodeling during synaptic plasticity is critical for understanding the neuronal basis of physiological and pathological brain function. Since actin filaments (F-actin) define dendritic spine morphology, actin-binding proteins (ABP) that accelerate dis-/assembly of F-actin moved into the focus as critical regulators of synaptic plasticity. We recently identified cyclase-associated protein 1 (CAP1) as a novel actin regulator in neurons that cooperates with cofilin1, an ABP relevant for synaptic plasticity. We therefore hypothesized a crucial role for CAP1 in structural synaptic plasticity. By exploiting mouse hippocampal neurons, we tested this hypothesis in the present study. We found that induction of both forms of synaptic plasticity oppositely altered concentration of exogenous, myc-tagged CAP1 in dendritic spines, with chemical LTP (cLTP) decreasing and chemical LTD (cLTD) increasing it. cLTP induced spine enlargement in CAP1-deficient neurons. However, it did not increase the density of large spines, different from control neurons. cLTD induced spine retraction and spine size reduction in control neurons, but not in CAP1-KO neurons. Together, we report that postsynaptic myc-CAP1 concentration oppositely changed during cLTP and cTLD and that CAP1 inactivation modestly affected structural plasticity.  相似文献   

18.
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.  相似文献   

19.
提出突触可塑性的一个可能的数学公式,尝试用这个公式统一地描述突触长时程增强效应和突触长时程抑制效应。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号