首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
Deletion mutants of Escherichia coli specific for hydrogenase isoenzyme 1 (HYD1) have been constructed and characterized. The hya operon, which contains genes for the two HYD1 structural subunits and four additional genes, was mapped at 22 min on the E. coli chromosome. The total hydrogenase activities of the HYD1-negative mutant and wild-type strains were similar. However, the formate dehydrogenase activity associated with the formate hydrogen lyase pathway was lower in the mutant. The hya mutant (strain AP1), complemented with only the hydrogenase structural genes (hyaAB), produced antigenically identifiable but inactive HYD1 protein. The first five genes of hya (hyaA to hyaE) were required for the synthesis of active HYD1, but wild-type levels of HYD1 activity were restored only when mutant cells were transformed with all six genes of the operon. When AP1 was complemented with hya carried on a high-copy-number plasmid, the HYD1 structural subunits were overexpressed, but the excess protein was unprocessed and localized in the soluble fraction of the cell. The products of hyaDEF are postulated to be involved in the processing of nascent structural subunits (HYAA and HYAB). This processing takes place only after the subunits are inserted into the cell membrane. It is concluded that the biosynthesis of active HYD1 is a complex biochemical process involving the cellular localization and processing of nascent structural subunits, which are in turn dependent on the insertion of nickel into the nascent HYD1 large subunit.  相似文献   

2.
3.
4.
5.
In previous studies it has been established that in Escherichia coli the three known subunits of anaerobic nitrate reductase are encoded by the narGHI operon. From the nucleotide sequence of the narI region of the operon we conclude that, in addition to the narG and narH genes, the nar operon contains two other open reading frames (ORFs), ORF1 and ORF2, that encode proteins of 26.5 and 25.5 kilodaltons, respectively. Protein fusions to each of the genes in the operon showed that expression of all four genes was similarly regulated. The reading frames of ORF1 and ORF2 were verified, and the N-terminal sequence for the ORF1 fusion protein was determined. The nar operon therefore contains four genes designated and ordered as narGHJI.  相似文献   

6.
The Escherichia coli ruvC gene is involved in DNA repair and recombination and encodes an endonuclease that resolves Holliday structure in vitro. The 2.8-kb chromosomal DNA fragment that encompasses the ruvC gene and its flanking regions was cloned and sequenced. Four open reading frames were identified in the order orf17-orf26-ruvC-orf23 immediately upstream of the ruvAB operon, and their orientations are the same as the ruvAB operon, except for orf23. Proteins encoded by orf17, orf26, and ruvC (orf19) were identified by the maxicell method, and their sizes agreed with those predicted from the DNA sequences. Among the open reading frames in this region, only ruvC is involved in the repair of UV-damaged DNA. ruvC appeared to be regulated by at least two promoters, but, in contrast to the ruvAB operon, ruvC is not regulated by the SOS system as demonstrated by operon fusions.  相似文献   

7.
8.
The recR gene of Escherichia coli, which is associated with recBC-independent mechanisms of recombination and DNA repair, has been located between dnaZX and htpG on a 6.4 kb EcoRI fragment of DNA that has been cloned and analysed in lambda and plasmid vectors. Nucleotide sequencing of this interval revealed two open reading frames that constitute an operon lying immediately downstream of dnaZX. The second of these two reading frames was identified as recR. It encodes a polypeptide with a predicted molecular weight of 21,965 Daltons that migrates on SDS gels as a 26 kDa protein. The first gene of the operon encodes a polypeptide of 12,015 daltons. Its function is not known.  相似文献   

9.
DNA encompassing the structural genes of an Escherichia coli [NiFe] hydrogenase has been cloned and sequenced. The genes were identified as those encoding the large and small subunits of hydrogenase isozyme 1 based on NH2-terminal sequences of purified subunits (kindly provided by K. Francis and K. T. Shanmugam). The structural genes formed part of a putative operon that contained four additional open reading frames. We have designated the operon hya and the six open reading frames hyaA through F. hyaA and hyaB encode the small and large structural subunits, respectively. The nucleotide-derived amino acid sequence of hyaC has a calculated molecular mass of 27.6 kilodaltons, contains 20% aromatic residues, and has four potential membrane-spanning regions. Open reading frames hyaD through F could encode polypeptides of 21.5, 14.9, and 31.5 kilodaltons, respectively. These putative peptides have no homology to other reported protein sequences, and their functions are unknown.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号