首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effect of gramicidin on macroscopic structure of the negatively charged membrane phospholipids cardiolipin, dioleoylphosphatidylglycerol and dioleoylphosphatidylserine in aqueous dispersions was investigated and compared with the effect of gramicidin on dioleoylphosphatidylcholine. It was shown by small-angle X-ray diffraction, 31P nuclear magnetic resonance and freeze-fracture electron microscopy that in all these lipid systems gramicidin is able to induce the formation of a hexagonal HII phase. 31P-NMR measurements indicated that the extent of HII phase formation in the various lipids ranged from about 40% to 60% upon gramicidin incorporation in a molar ratio of peptide to lipid of 1 : 10. Next, the following charged analogues of gramicidin were prepared: desformylgramicidin, N-succinylgramicidin and O-succinylgramicidin. The synthesis was verified with 13C-NMR and the effect of these analogues on lipid structure was investigated. It was shown that, as with gramicidin itself, the analogues induce HII phase formation in dioleoylphosphatidylcholine, lower and broaden the bilayer-to-HII phase transition in dielaidoylphosphatidylethanolamine and form lamellar structures upon codispersion with palmitoyllysophosphatidylcholine. Differential scanning calorimetry measurements indicated that, again like gramicidin, in phosphatidylethanolamine the energy content of the gel-to-liquid-crystalline phase transition is not affected by incorporation of the analogues, whereas in phosphatidylcholine a reduction of the transition enthalpy is found. These observations were explained in terms of a similar tendency to self-associate for gramicidin and its charged analogues. The results are discussed in the light of the various factors which have been suggested to be of importance for the modulation of lipid structure by gramicidin.  相似文献   

2.
The role of the tryptophan-residues in gramicidin-induced HII phase formation was investigated in dioleoylphosphatidylcholine (DOPC) model membranes. 31P-NMR and small angle X-ray diffraction measurements showed, that gramicidin A and C (in which tryptophan-11 is replaced by tyrosine) induce a similar extent of HII phase formation, whereas for gramicidin B and synthetic analogs in which one tryptophan, either at position 9 or 11 is replaced by phenylalanine, a dramatic decrease of the HII phase inducing activity can be observed. Modification of all four tryptophans by means of formylation of the indole NH group leads to a complete block of HII phase formation. Sucrose density centrifugation experiments on the various peptide/lipid samples showed a quantitative incorporation of the peptide into the lipid. For all samples in a 1/10 molar ratio of peptide to lipid distinct bands were found, indicative of a phase separation. For the gramicidin A'/DOPC mixture these bands were analyzed and the macroscopic organization was determined by 31P-NMR and small-angle X-ray diffraction. The results demonstrate that a quantitative phase separation had occurred between a lamellar phase with a gramicidin/lipid ratio of 1/15 and a hexagonal HII phase, which is highly enriched in gramicidin. A study on the hydration properties of tryptophan-N-formylated gramicidin in mixtures with DOPC showed that this analog has a similar dehydrating effect on the lipid headgroup as the unmodified gramicidin. In addition both the hydration study and sucrose density centrifugation experiments showed that, like gramicidin also its analogs have a tendency to aggregate, but with differences in aggregation behaviour which seemed related to their HII phase inducing activity. It is proposed that the main driving force for HII phase formation is the tendency of gramicidin molecules to self-associate and organize into tubular structures such as found in the HII phase and that whether gramicidin (analogs) form these or other types of aggregates depends on their tertiary structure, which is determined by intra- as well as intermolecular aromatic-aromatic stacking interactions.  相似文献   

3.
J A Killian  B de Kruijff 《Biochemistry》1985,24(27):7890-7898
The macroscopic organization, lipid head group conformation, and structural and dynamic properties of 2H2O were investigated in dioleoylphosphatidylcholine (DOPC) model systems of varying gramicidin and 2H2O (or H2O) content by means of small-angle X-ray diffraction and 31P and 2H NMR. At low stages of hydration, N less than 6 (N = 2H2O/DOPC molar ratio), a single lamellar phase is observed in which the gramicidin molecules become preferentially hydrated upon increasing N. For 6 less than N less than 12 phase separation occurs between a gramicidin-poor and a gramicidin-rich lamellar phase. This latter phase is characterized by a smaller repeat distance and decreased DOPC head group order. For N greater than 12, the gramicidin-rich lamellar phase converts to a hexagonal HII phase. Thus, hydration of gramicidin is a prerequisite for HII phase formation in the DOPC/gramicidin system. The HII phase is very rich in gramicidin and 2H2O (gramicidin:DOPC:H2O = 1:1.1:0.9 w/w/w). A model is proposed in which self-assembly of hydrated gramicidin molecules into domains of a specific structure plays a determinant role in the formation of the HII phase by gramicidin.  相似文献   

4.
It is shown by 31P-NMR and small angle X-ray scattering that induction of an hexagonal HII phase in dioleoylphosphatidylcholine model membranes by external addition of gramicidin A' depends on the solvent which is used to solubilize the peptide. Addition of gramicidin from dimethylsulfoxide or trifluoroethanol solution leads to HII phase formation whereas addition of the peptide from ethanol does not. This solvent dependence is shown by circular dichroism to be correlated with the peptide conformation. The channel conformation appears to be responsible for HII phase formation by gramicidin.  相似文献   

5.
The following results are reported in this paper: The interaction of gramicidin with [11,11-2H2]dioleoylphosphatidylcholine (DOPC) and [11,11-2H2]dioleoylphosphatidylethanolamine (DOPE) at different stages of hydration was studied by 2H- and 31P-nuclear magnetic resonance. In the L alpha phase in excess water the acyl chains of phosphatidylethanolamine (PE) are more ordered than phosphatidylcholine (PC) most likely as the result of the lower headgroup hydration of the former lipid. In excess water gramicidin incorporation above 5 mol % in DOPC causes a bilayer----hexagonal HII phase change. In the HII phase acyl chain order is virtually unaffected by gramicidin but the peptide restricts the fast chain motions. At low water content gramicidin cannot induce the HII phase but it markedly decreases chain order in the DOPC bilayer. Increasing water content results in separation between a gramicidin-poor and a gramicidin-rich L alpha phase with decreased order of the entire lipid molecule. Further increase in hydration reverts at low gramicidin contents the phase separation and at high gramicidin contents results in a direct change of the disordered lamellar to the hexagonal HII phase. Gramicidin also promotes HII phase formation in the PE system but interacts much less strongly with PE than with PC. The results support our hypothesis that gramicidin, by a combination of strong intermolecular attraction forces and its pronounced cone shape, both involving the four tryptophans at the COOH-terminus, has a strong tendency to organize, with the appropriate lipid, in intramembranous cylindrical structures such as is found in the HII phase.  相似文献   

6.
The energetics of interaction and the type of aggregate structure in lateral assemblies of up to five gramicidin molecules in the beta 6.3 helical conformation at the air/water interface was calculated using conformational analysis procedures. It was found that within the aggregate two types of gramicidin interaction occur. One leading to a linear organization with a mean interaction energy between monomers of -6 kcal/mol and one in a perpendicular direction leading to a circularly organization with a lower mean interaction energy of -10 kcal/mol. Extrapolation towards larger gramicidin assemblies predicts that gramicidin itself could form tubular structures similar to those found in the gramicidin-induced HII phase. The tryptophans appear to play an essential role in the tubular organization of the gramicidin aggregate, since they determine the cone shape of the monomer and contribute to the structure of the monomer and oligomer by stacking interactions. These results, which are discussed in the light of experimental observations of gramicidin self-association in model membranes and the importance of the tryptophans for HII phase formation, further support the view (Killian, J.A. and De Kruijff, B. (1986) Chem. Phys. Lipids 40, 259-284) that gramicidin is a first example of a new class of hydrophobic polypeptides which can form cylindrical structures within the hydrophobic core of the membrane.  相似文献   

7.
The fusogenic properties of gramicidin were investigated by using large unilamellar dioleoylphosphatidylcholine vesicles. It is shown that gramicidin induces aggregation and fusion of these vesicles at peptide to lipid molar ratios exceeding 1/100. Both intervesicle lipid mixing and mixing of aqueous contents were demonstrated. Furthermore, increased static and dynamic light scattering and a broadening of 31P NMR signals occurred concomitant with lipid mixing. Freeze-fracture electron microscopy revealed a moderate vesicle size increase. Lipid mixing is paralleled by changes in membrane permeability: small solutes like carboxyfluorescein and smaller dextrans, FD-4(Mr approximately 4000), rapidly (1-2 min) leak out of the vesicles. However, larger molecules like FD-10 and FD-17 (Mr approximately 9400 and 17,200) are retained in the vesicles for greater than 10 min after addition of gramicidin, thereby making detection of contents mixing during lipid mixing possible. At low lipid concentrations (5 microM), lipid mixing and leakage are time resolved: leakage of CF shows a lag phase of 1-3 min, whereas lipid mixing is immediate and almost reaches completion during this lag phase. It is therefore concluded that leakage, just as contents mixing, occurs subsequent to aggregation and lipid mixing. Although addition of gramicidin at a peptide/lipid molar ratio exceeding 1/50 eventually leads to hexagonal HII phase formation and a loss of vesicle contents, it is concluded that leakage during fusion (1-2 min) is not the result of HII phase formation but is due to local changes in lipid structure caused by precursors of this phase. By making use of gramicidin derivatives and different solvent conformations, it is shown that there is a close parallel between the ability of the peptide to induce the HII phase and its ability to induce intervesicle lipid mixing and leakage. It is suggested that gramicidin-induced fusion and HII phase formation share common intermediates.  相似文献   

8.
The influence of cholesterol incorporation on gramicidin-induced hexagonal HII phase formation in different phosphatidylcholine model systems was investigated by 31P- and 2H-NMR, small-angle X-ray diffraction and differential scanning calorimetry. In liquid-crystalline distearoylphosphatidylcholine systems cholesterol inhibits gramicidin-induced HII phase formation. In dioleoylphosphatidylcholine the opposite effect is observed. Cholesterol appears to preferentially interact with gramicidin under liquid-crystalline conditions in both systems. Two phenomena that had been reported for gramicidin-treated erythrocyte membranes and derived liposomes (Tournois, H., Leunissen-Bijvelt, J., Haest, C.W.M., De Gier, J. and De Kruijff, B. (1987) Biochemistry, 26, 6613-6621) could also be observed in more simple dioleoylphosphatidylcholine-gramicidin-cholesterol systems. These are (i) an increase in tube diameter in the gramicidin-induced HII phase with increasing temperature, which is ascribed to the presence of cholesterol in this phase, and (ii) the loss of the hexagonal HII phase related 31P-NMR line shape at lower temperatures despite the presence of this phase as demonstrated with X-ray diffraction. This latter phenomenon appears to be due to restrictions in the rate of lateral diffusion of the phospholipids around the HII tubes due to the presence of gramicidin.  相似文献   

9.
Previously it was shown that gramicidin can induce HII phase formation in diacylphosphatidylcholine model membranes only when the lipid acyl chain length exceeds 16 carbon atoms (Van Echteld, C.J.A., De Kruijff, B., Verkleij, A.J., Leunissen-Bijvelt, J. and De Gier, J. (1982) Biochim. Biophys. Acta 692, 126-138). Using 31P-NMR and small angle X-ray diffraction we now demonstrate that upon increasing the length of gramicidin, the peptide loses its ability to induce HII phase formation in di-C18:1c-PC but not in the longer chained di-C22:1c-PC. It is concluded that a mismatch in length between gramicidin and the lipid acyl chains, when the latter would provide excess bilayer thickness, is a prerequisite for HII phase formation in phosphatidylcholine model membranes.  相似文献   

10.
Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes   总被引:3,自引:0,他引:3  
Using 31P nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and freeze-fracture electron microscopic (FFEM) techniques, it is shown that gramicidin induces a hexagonal HII phase not only in liposomes prepared from total lipids extracted from human erythrocytes but also in isolated human erythrocyte membranes (white ghosts). A 37 degrees C, HII phase formation is detected at a gramicidin to phospholipid molar ratio exceeding 1:80. At a molar ratio of 1:5, about 30% of the phospholipid is organized in the HII phase. The gramicidin-induced HII phase exhibits a very small 31P chemical shift anisotropy [(CSA) approximately 10 +/- 1 ppm], indicating decreased head-group order, and it displays a temperature-dependent increase in tube diameter from 60.2 A at 4 degrees C to 64.2 A at 37 degrees C in ghosts and from 62.8 to 69.4 A at 37 degrees C in total lipid extracts, both in the presence of 1 mol of gramicidin/10 mol of phospholipid. This anomalous temperature-dependent behavior is probably due to the presence of cholesterol. 31P NMR data indicate that the HII phase formation by gramicidin is temperature dependent and show the gradual disappearance of the HII phase at low temperatures (less than 20 degrees C), resulting in a bilayer type of 31P NMR line shape at 4 degrees C, whereas SAXS and FFEM data suggest equal amounts of HII phases at all temperatures. This apparent discrepancy is probably the result of a decrease in the rate of lateral diffusion of the membrane phospholipids which leads to incomplete averaging of the 31P CSA in the HII phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
J A Killian  B de Kruijff 《Biochemistry》1985,24(27):7881-7890
The effect of gramicidin incorporation on the thermodynamic properties of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) dispersions was investigated by differential scanning calorimetry. The results show that incorporation of gramicidin in PC systems results in a decrease of the energy content of the gel to liquid-crystalline phase transition. When incorporated in PE systems, however, the peptide does not affect the properties of the gel to liquid-crystalline phase transition with the exception that at high gramicidin concentrations the onset of the melting process is shifted to a slightly lower temperature. We therefore assume that in the lamellar gel state of PE aggregation of the peptide occurs. To get more insight into the nature of the gramicidin-PE interaction, we studied the motional and structural details of HII phase formation in gramicidin/PE systems with the use of 31P and 13C nuclear magnetic resonance (NMR) and small-angle X-ray diffraction. In agreement with earlier results [Van Echteld, C. J. A., Van Stigt, R., de Kruijff, B., Leunissen-Bijvelt, J., Verkleij, A. J., & De Gier, J. (1981) Biochim. Biophys. Acta 648, 287-291] it was shown that gramicidin incorporation lowers and broadens the bilayer to hexagonal HII phase transition in PE systems. 31P NMR chemical shift anisotropy (CSA) measurements indicated that a phase separation occurs between a gramicidin-poor lamellar phase and a gramicidin-rich HII phase. From combined CSA and spin-lattice relaxation time (T1) measurements it was suggested that in the HII phase gramicidin decreases the molecular order and increases the rate of motion of the phosphate moiety of PE. In addition, 13C NMR line width measurements indicated that the acyl chains are more disordered in the HII phase than in the lamellar phase and that a similar disorder occurs in the HII phase of the pure PE as in the gramicidin-rich HII phase. This interpretation was supported by the X-ray diffraction data, which show similar first-order repeat distances in both types of HII phase. From saturation-transfer NMR experiments in PE and gramicidin-PE mixtures it was shown that no exchange occurs between the lamellar and the HII phases in the time scale of 1-2 s, suggesting a macroscopic phase separation. Finally, we discussed the gramicidin-lipid interaction and in particular the HII phase formation by gramicidin in PE and in PC systems. It is proposed that aggregation of the peptide plays a crucial role in HII phase formation.  相似文献   

12.
It is shown that N-formylation of the tryptophan residues of gramicidin completely and reversibly blocks the hexagonal HII phase-inducing ability of the peptide in dioleoylphosphatidylcholine model membranes.  相似文献   

13.
K J Cox  C Ho  J V Lombardi  C D Stubbs 《Biochemistry》1992,31(4):1112-1117
The transition of gramicidin from a nonchannel to a channel form was investigated using mixed-chain phosphatidylcholine lipid bilayers. Gramicidin and phospholipids were codispersed, after removal of the solvents chloroform/methanol or trifluoroethanol which resulted in nonchannel and channel conformations, respectively, as confirmed using circular dichroism (CD). The fluorescence emission maxima of the nonchannel form were shifted toward shorter wavelengths by heating at 60 degrees C (for 0-12 h), which converted it to a channel form, again as confirmed by CD. The channel form did not respond to heat treatment. Heat treatment also increased the fluorescence anisotropy of the nonchannel gramicidin tryptophans. The rate of transition from the nonchannel to channel conformation was found to be faster if phosphatidylethanolamine was present in combination with phosphatidylcholine compared to phosphatidylcholine alone. Also, gramicidin in bilayers of the polyunsaturated 1-palmitoyl-2-docosahexaenoyl-phosphatidylcholine converted more rapidly compared to 1-palmitoyl-2-oleoylphosphatidylcholine. Using the fluorescence anisotropy of the membrane lipid probe 1,6-diphenyl-1,3,5-hexatriene, it was also shown that the motional properties of the surrounding lipid acyl chains differed for the channel and nonchannel gramicidin conformations. The possibility that lipids tending to favor the hexagonal phase (HII) would enhance the rate of the nonchannel to channel transition was supported by 31P NMR which revealed the presence of some HII lipids in the channel preparations. The results of this study suggest that gramicidin may serve as a useful model for similar conformational transitions in other more complex membrane proteins.  相似文献   

14.
The interactions of three polypeptide antibiotics (polymyxin B, gramicidin S, and valinomycin) with artificial lecithin membranes were studied by nuclear magnetic resonance (NMR). Combination of 31P and 2H NMR allowed observation of perturbations of the bilayer membrane structure induced by each of the antibiotics in the regions of the polar headgroups and acyl side chains of the phospholipids. The comparative study of the effects of these membrane-active antibiotics and the lipid bilayer structure demonstrated distinct types of antibiotic-membrane interactions in each case. Thus, the results showed the absence of interaction of polymyxin B with the dimyristoyllecithin membranes. In contrast, gramicidin S exhibited strong interaction with the lipid above the gel to liquid-crystalline phase transition temperature: disordering of the acyl side chains was evident. Increasing the concentration of gramicidin S led to disintegration of the bilayer membrane structure. At a molar ratio of 1:16 of gramicidin S to lecithin, the results are consistent with coexistence of gel and liquid-crystalline phases of the phospholipids near the phase transition temperature. Valinomycin decreased the phase transition temperature of the lipids and increased the order parameters of the lipid side chains. Such behavior is consistent with penetration of the valinomycin molecule into the interior of the lipid bilayers.  相似文献   

15.
Szule JA  Rand RP 《Biophysical journal》2003,85(3):1702-1712
Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model systems composed of phospholipids and gramicidin, the effects produced by gramicidin on lipid layers were measured. These measurements explore how peptides are able to modulate the spontaneous curvature properties of phospholipid assemblies. The reverse hexagonal, H(II), phase formed by dioleoylphosphatidylethanolamine (DOPE) monolayers decreased in lattice dimension with increasing incorporation of gramicidin. This indicated that gramicidin itself was adding negative curvature to the lipid layers. In this system, gramicidin was measured to have an apparent intrinsic radius of curvature, R0pgram, of -7.1 A. The addition of up to 4 mol% gramicidin in DOPE did not result in the monolayers becoming stiffer, as measured by the monolayer bending moduli. Dioleoylphosphatidylcholine (DOPC) alone forms the lamellar (L(alpha)) phase when hydrated, but undergoes a transition into the reverse hexagonal (H(II)) phase when mixed with gramicidin. The lattice dimension decreases systematically with increased gramicidin content. Again, this indicated that gramicidin was adding negative curvature to the lipid monolayers but the mixture behaved structurally much less consistently than DOPE/gramicidin. Only at 12 mol% gramicidin in dioleoylphosphatidylcholine could an apparent radius of intrinsic curvature of gramicidin (R0pgram) be estimated as -7.4 A. This mixture formed monolayers that were very resistant to bending, with a measured bending modulus of 115 kT.  相似文献   

16.
Addition of gramicidin in sufficient concentration from dimethylsulfoxide or trifluoroethanol to isolated erythrocyte membranes induces hexagonal HII phase formation for the phospholipids. In contrast, addition from ethanol does not change the overall bilayer organization despite a similar extent of peptide incorporation. The same solvent dependence is observed for the enhancement of transbilayer reorientation of lysophospholipids and unspecific leak formation in intact erythrocytes at lower gramicidin concentrations. These results indicate that the (beta 6.3) conformation of the peptide is essential for all three membrane perturbing effects.  相似文献   

17.
Dimethyl sulfoxide (DMSO), a water-miscible organic solvent, has been used as a cryoprotectant for cells. It is known that DMSO stabilizes the HII phase of phosphatidylethanolamine (PE) membranes rather than the Lalpha phase, while most other water-miscible organic solvents such as acetone and ethanol destabilize the HII phase. To elucidate the mechanism for this stabilizing effect of DMSO on the HII phase, we have investigated its effects on the structures and physical properties of PE membranes. X-ray diffraction data indicated that dipalmitoleoylphosphatidylethanolamine (DPOPE) membranes in H2O at 20 degrees C were in the Lalpha phase and that an Lalpha to HII phase transition occurred at X=0.060 (mole fraction of DMSO) in water/DMSO mixtures. As the DMSO concentration increased, the basis vector length of the dioleoylphosphatidylethanolamine (DOPE)/ 16 wt% tetradecane membrane and also of the DPOPE/ 16 wt% tetradecane membrane in the HII phase decreased, suggesting that the spontaneous curvature of these membranes increased. We have also investigated the effects of DMSO on the physical properties of the PE membranes, and compared them with those of acetone. As the DMSO concentration increased, the excimer to monomer fluorescence intensities of pyrene-phosphatidylcholine in the PE membranes decreased, indicating that the membrane fluidity decreased, and also the generalized polarization value of the Laurdan fluorescent probe in the DPOPE membrane increased, indicating that the polarity of the membrane interface decreased. On the other hand, acetone had the opposite effects to DMSO. The interaction free energy between the membrane surface segments and solvent increased with an increase in DMSO concentration. It decreased the amount of solvent in the membrane interface, inducing an increase in the spontaneous curvature. This can reasonably explain the effects of DMSO on the phase stability and the physical properties of the membranes.  相似文献   

18.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

19.
Effect of cyclopeptide antibiotic gramicidin S on some enzymes and physical state of isolated Micrococcus lysodeikticus membranes is studied. Malate and lactate dehydrogenases were monotonously inhibited under the increase of gramicidin S concentration, while the activity of NADH-dehydrogenase firstly decreased and then reversed to the initial level under further increase of gramicidin S concentration. The oxygen uptake under oxidation of NADH and malate with membranes almost completely inhibited by the antibiotic, while the activity of ascorbate-TMPD-oxidase activity slightly inhibited by the same concentration of gramicidin. The addition of Triton X-100 completely eliminated the inhibitory effect of gramicidin on malate dehydrogenase. The introduction into the membrane of spine probes (2,2,6,6-tetramethyl-4-palmitoylamidopiperidine-1-oxile and 2(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxyazolidinyloxile) revealed that gramicidin caused the condensation of membrane lipid component. It is suggested that ionic interaction of gramicidin S with membrane phospholipids brings to "a freezing" of lipids which is a direct cause of impairing the activity of membrane respiration enzymes and the change of their position in the lipid matrix, thus inhibiting energy-producing processes in cell.  相似文献   

20.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号